\(d\) trong các trường hợp sau:
a. \(d\...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 5 2019

Hỏi đáp Toán

30 tháng 5 2017

Ôn tập Hàm số bậc nhất

Ôn tập Hàm số bậc nhất

Ôn tập Hàm số bậc nhất

7 tháng 2 2022

xin lỗi mình chưa đọc chỗ parabol ,sửa dòng 8 dưới lên nhé 

\(x_1x_2\left(\frac{1}{2}x_1^2+\frac{1}{2}x_2^2\right)+48=0\)

\(\Leftrightarrow\frac{1}{2}x_1x_2\left[\left(x_1+x_2\right)^2-2x_1x_2\right]+48=0\)

\(\Leftrightarrow\frac{1}{2}\left(2m-2\right)\left[16-2\left(2m-2\right)\right]+48=0\)

\(\Leftrightarrow\left(m-1\right)\left(20-4m\right)+48=0\Leftrightarrow-4m^2+20m-20+4m+48=0\)

\(\Leftrightarrow-4m^2+24m+28=0\Leftrightarrow m^2-6m-7=0\)

Ta có : a - b + c = 1 + 6 - 7 = 0 

vậy pt có nghiệm x = -1 ; x = 7 

7 tháng 2 2022

a) vì A(-1; 3) thuộc (d) nên:

3 = 2.(-1) - a + 1

<=> 3 = -2 - a + 1

<=> a = 4

b) Lập phương trình hoành độ giao điểm: 

\(2x-a+1=\frac{1}{2}x^2\)

\(\Leftrightarrow\frac{1}{2}x^2-2x+a-1=0\)

ta có: \(y_1=\frac{1}{2}x_1^2\)

         \(y_2=\frac{1}{2}x_2^2\)

\(\Leftrightarrow x_1x_2\left(\frac{1}{2}x_1^2+\frac{1}{2}x_2^2\right)+48=0\)

\(\Leftrightarrow x_1x_2\left[\frac{1}{2}\left(x_1^2+x_2^2\right)\right]+48=0\)

\(\Leftrightarrow x_1x_2\left[\frac{1}{2}\left(x_1+x_2\right)^2-2x_1x_2\right]+48=0\)

Theo định lý viet, ta có: \(\hept{\begin{cases}x_1+x_2=-\frac{b}{a}=4\\x_1x_2=\frac{c}{a}=\frac{a-1}{2}\end{cases}}\)

\(\Leftrightarrow\left(\frac{a-1}{2}\right)\left[\frac{1}{2}\cdot4^2-2\left(\frac{a-1}{2}\right)\right]+48=0\)

\(\Leftrightarrow10a-a^2+87=0\)

\(\Leftrightarrow\orbr{\begin{cases}x_1=5-4\sqrt{7}\\x_2=5+4\sqrt{7}\end{cases}}\)

NV
26 tháng 11 2019

\(\frac{x_A}{x_B}=\frac{2}{7}\Rightarrow x_A=\frac{2x_B}{7}\)

Thay vào pt 2 đường thẳng ta được:

\(\left\{{}\begin{matrix}y_B-6=\frac{2x_B}{7}+2\\y_B=x_B-2\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x_B=14\\y_B=12\end{matrix}\right.\) \(\Rightarrow B\left(14;12\right)\)

\(\Rightarrow\left\{{}\begin{matrix}x_A=\frac{2}{7}x_B=4\\y_A=y_B-6=6\end{matrix}\right.\) \(\Rightarrow A\left(4;6\right)\)

6/ Phương trình đường thẳng thiếu, chắc nó là \(y=mx-2m-1\)

Gọi tọa độ điểm cố định là \(M\left(x_0;y_0\right)\)

\(\Rightarrow y_0=mx_0-2m-1\) \(\forall m\)

\(\Leftrightarrow m\left(x_0-2\right)-\left(y_0+1\right)=0\)

\(\Leftrightarrow\left\{{}\begin{matrix}x_0-2=0\\y_0+1=0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x_0=2\\y_0=-1\end{matrix}\right.\) \(\Rightarrow M\left(2;-1\right)\)

b/ Để (d) cắt 2 trục tại 2 điểm pb \(\Rightarrow\left\{{}\begin{matrix}m\ne0\\m\ne-\frac{1}{2}\end{matrix}\right.\)

Tọa độ A: \(y=0\Rightarrow x=\frac{2m+1}{m}\Rightarrow A\left(\frac{2m+1}{m};0\right)\Rightarrow OA=\left|\frac{2m+1}{m}\right|\)

Tọa độ B: \(x=0\Rightarrow y=-2m-1\Rightarrow B\left(0;-2m-1\right)\Rightarrow OB=\left|2m+1\right|\)

\(S_{OAB}=\frac{1}{2}OA.OB=\frac{1}{2}\left|\frac{2m+1}{m}\right|.\left|2m+1\right|=1\)

\(\Leftrightarrow\left(2m+1\right)^2=2\left|m\right|\Rightarrow\left[{}\begin{matrix}4m^2+4m+1=2m\left(m>0\right)\\4m^2+4m+1=-2m\left(m< 0\right)\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}4m^2+2m+1=0\left(vn\right)\\4m^2+6m+1=0\end{matrix}\right.\) \(\Rightarrow m=\frac{-3\pm\sqrt{5}}{2}\)

a: (d1); y=4mx-(m+5)

=m(4x-1)-5

Điểm mà (d1) luôn đi qua có tọa độ là:

4x-1=0 và y=-5

=>x=1/4 và y=-5

(d2): \(y=\left(3m^2+1\right)x+m^2-4\)

=3m^2x+3x+m^2-4

=m^2(3x+1)+3x-4

ĐIểm mà (d2) luôn đi qua có tọa độ là:

3x+1=0 và y=3x-4

=>x=-1/3 và y=-1-4=-5

b: A(1/4;-5); B(-1/3;-5)

\(AB=\sqrt{\left(-\dfrac{1}{3}-\dfrac{1}{4}\right)^2+\left(-5+5\right)^2}=\dfrac{7}{12}\)

c: Để hai đường song song thì

\(\left\{{}\begin{matrix}3m^2+1=4m\\m^2-4+m+5< >0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\left(m-1\right)\left(3m-1\right)=0\\m^2+m+1< >0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}m=1\\m=\dfrac{1}{3}\end{matrix}\right.\)