Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Hướng dẫn trả lời:
Gọi (d) là đồ thị hàm số y = ax + b
a) Vì A(1; 3) ∈ (d) nên 3 = a + b
Vì B(-1; -1) ∈ (d) nên -1 = -a + b
Ta có hệ phương trình: {a+b=3−a+b=−1{a+b=3−a+b=−1
Giải hệ phương trình ta được: a = 2; b = 1
b) Vì (D): y = ax + b song song với đường thẳng (d’): y = x + 5 nên suy ra:
a = a’ = 1
Ta được (d): y = x + b
Vì C (1; 2) ∈ (d): 2 = 1 + b ⇔ b =1
Vậy a = 1; b = 1
b: Để hai đường song song thì m^2-1=1 và -m^2+3=5
=>m^2=2 và -m^2=2
=>\(m=\pm\sqrt{2}\)
c: Vì (d2) vuông góc với (d3)
và (d1)//(d2)
nên (d1) vuông góc với (d3)
a, bạn tự vẽ
b, Gọi giao điểm của 2 đường thẳng trên là M( x1,y1)
Tọa độ giao điểm của 2 đường thẳng trên là nghiệm của hệ phương trình:
\(\left\{{}\begin{matrix}y=-x+3\\y=3x-1\end{matrix}\right.\)<=> \(\left\{{}\begin{matrix}x=1\\y=2\end{matrix}\right.\)
Vậy.....
c,Phương trình đường thẳng có dạng y=ax+b
Vì đường thẳng qua điểm (2;-5) và song song với đường thẳng d1 nên ta có : a=-1, x=2, y=-5
=>b=-3
Thay a=-1, b=-3 vào cths y=ax+b ta được :
y=-x-3
Vậy...
bạn thử tải app này xem có đáp án không nhé <3 https://giaingay.com.vn/downapp.html
\(2x^2-mx-2m=0\)
a/ \(\Delta=m^2+16m=0\Rightarrow\left[{}\begin{matrix}m=0\\m=-16\end{matrix}\right.\)
b/ Gọi \(d_1:\) \(y=4x+b\)
\(A\left(a;a+7\right)\Rightarrow a+7=2a+4\Rightarrow a=3\Rightarrow A\left(3;10\right)\)
\(\Rightarrow10=4.3+b\Rightarrow b=-2\Rightarrow d_1:\) \(y=4x-2\)
\(\left\{{}\begin{matrix}y=mx+2m\\y=4x-2\end{matrix}\right.\)
- Nếu \(\Rightarrow\left(m-4\right)x+2m+2=0\Rightarrow x=\frac{-2m-2}{m-4}\Rightarrow y=\frac{-10m}{m-4}\)
Tự thay 2 giá trị m ở câu a vào để tính ra tọa độ cụ thể
c/ Với\(k\ne2l\ne4\Rightarrow\left\{{}\begin{matrix}k\ne4\\l\ne2\end{matrix}\right.\)
\(\left\{{}\begin{matrix}y=kx+2k+1\\y=4x-2\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=\frac{-2k-3}{k-4}\\y=\frac{-10k-4}{k-4}\end{matrix}\right.\)
\(\left\{{}\begin{matrix}y=2lx+l-2\\y=4x-2\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=\frac{-l}{2l-4}\\y=\frac{-4l+4}{l-2}\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}\frac{-2k-3}{k-4}=\frac{-l}{2l-4}\\\frac{-10k-4}{k-4}=\frac{-4l+4}{l-2}\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}k=...\\l=...\end{matrix}\right.\)