Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=\frac{1}{x+y+z}\left(x;y;z,x+y+z\ne0\right)\)
\(\Rightarrow\frac{xy+yz+xz}{xyz}=\frac{1}{x+y+z}\)
\(\Rightarrow\left(xy+yz+xz\right)\left(x+y+z\right)=xyz\)
\(\Leftrightarrow\left(xy+yz+xz\right)\left(x+y+z\right)-xyz=0\)
\(\Leftrightarrow\left(xy+yz\right)\left(x+y+z\right)+xz\left(x+z\right)=0\)
\(\Leftrightarrow y\left(x+z\right)\left(x+y+z\right)+xz\left(x+z\right)=0\)
\(\Leftrightarrow\left(x+z\right)\left(xy+y^2+yz\right)+xz\left(x+z\right)=0\)
\(\Leftrightarrow\left(x+z\right)\left(xy+y^2+yz+xz\right)=0\)
\(\Leftrightarrow\left(x+z\right)\left[y\left(x+y\right)+z\left(x+y\right)\right]=0\)
\(\Leftrightarrow\left(x+z\right)\left(x+y\right)\left(y+z\right)=0\)
Từ đó \(x=-z\)hoặc \(x=-y\)hoặc \(y=-z\)
-Nếu \(x=-z\Rightarrow z^{2017}+x^{2017}=0\Rightarrow M=\frac{19}{4}+0=\frac{19}{4}\)
Tương tự với các trường hợp còn lại, ta cũng tính được \(M=\frac{19}{4}\)
\(x^3+3x^2+3x+1+y^3+3y^3+3y+1+x+y+2=0\)
\(\Leftrightarrow\left(x+1\right)^3+\left(y+1\right)^3+x+y+2=0\)
\(\Leftrightarrow\left(x+y+2\right)\left(\left(x+1\right)^2+\left(y+1\right)^2-\left(x+1\right)\left(y+1\right)\right)+\left(x+y+2\right)=0\)
\(\Leftrightarrow\left(x+y+2\right)\left(\left(x+1\right)^2+\left(y+1\right)^2-\left(x+1\right)\left(y+1\right)+1\right)=0\)
\(\Leftrightarrow x+y+2=0\)
(phần trong ngoặc \(\left(x+1\right)^2-\left(x+1\right)\left(y+1\right)+\frac{\left(y+1\right)^2}{4}+\frac{3\left(y+1\right)^2}{4}+1\)
\(=\left(x+1-\frac{y+1}{4}\right)^2+\frac{3\left(y+1\right)^2}{4}+1\) luôn dương)
\(\Rightarrow x+y=-2\)
Mà \(xy>0\Rightarrow\left\{{}\begin{matrix}x< 0\\y< 0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}-x>0\\-y>0\end{matrix}\right.\)
Ta có: \(\frac{1}{-x}+\frac{1}{-y}\ge\frac{4}{-\left(x+y\right)}=2\) \(\Leftrightarrow\frac{1}{x}+\frac{1}{y}\le-2\) (đpcm)
Dấu "=" xảy ra khi và chỉ khi \(x=y=-1\)
2/ \(x;y;z\ne0\)
\(\Leftrightarrow\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=\frac{1}{x+y+z}\)
\(\Leftrightarrow\frac{x+y}{xy}+\frac{1}{z}-\frac{1}{x+y+z}=0\)
\(\Leftrightarrow\frac{x+y}{xy}+\frac{x+y}{xz+yz+z^2}=0\)
\(\Leftrightarrow\left(x+y\right)\left(\frac{1}{xy}+\frac{1}{xz+yz+z^2}\right)=0\)
\(\Leftrightarrow\left(x+y\right)\left(\frac{xy+yz+xz+z^2}{xyz\left(x+y+z\right)}\right)=0\)
\(\Leftrightarrow\frac{\left(x+y\right)\left(y+z\right)\left(z+x\right)}{xyz\left(x+y+z\right)}=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-y\\y=-z\\z=-x\end{matrix}\right.\) dù trường hợp nào thì thay vào ta đều có \(B=0\)
3/ \(\Leftrightarrow mx-2x+my-y-1=0\)
\(\Leftrightarrow m\left(x+y\right)-\left(2x+y+1\right)=0\)
Gọi \(A\left(x_0;y_0\right)\) là điểm cố định mà d đi qua
\(\Leftrightarrow\left\{{}\begin{matrix}x_0+y_0=0\\2x_0+y_0+1=0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x_0=-1\\y_0=1\end{matrix}\right.\)
Vậy d luôn đi qua \(A\left(-1;1\right)\) với mọi m
bài toán này bắt nguồn 1 phần từ bài: Cho x;y;z nguyên thỏa mãn \(x^3+y^3+z^3⋮3\). Chứng minh \(x+y+z⋮3\)
Quay về bài toán đầu: (cũng chứng minh luôn bài toán trên)
Ta có: (x + y + z)3 = x3 + y3 + z3 +3(x + y)(y + z)(z + x) (*)
Lại có: \(x^3+y^3+z^3⋮3;3\left(x+y\right)\left(y+z\right)\left(z+x\right)⋮3\) nên \(\left(x+y+z\right)^3⋮3\)\(\Rightarrow x+y+z⋮3\)
\(\Rightarrow\left(x+y+z\right)^3⋮27\)
Kết hợp với (*) và \(x^3+y^3+z^3⋮27\)\(\Rightarrow3\left(x+y\right)\left(y+z\right)\left(z+x\right)⋮27\)
\(\Rightarrow\left(x+y\right)\left(y+z\right)\left(z+x\right)⋮9\left(1\right)\)
+) Nếu cả 3 số x;y;z cùng chia hết cho 3 ta có đpcm
+) Nếu 3 số x;y;z không cùng chia hết cho 3
Thấy rẳng nếu x;y;z cùng dư 1 hoặc 2 thì mâu thuẫn với (1)
Do đó, để (1) đúng thì trong 3 số x;y;z chỉ có 2 số chia hết cho 3 hoặc có 1 số chia 3 dư 1; 1 số chia 3 dư 2
- Nếu trong 3 số x;y;z chỉ có 2 số chia hết cho 3; giả sử x;y chia hết cho 3
Khi đó; \(x+y⋮3;y+z⋮̸3;z+x⋮̸̸3\)
Để (1) đúng thì \(x+y⋮9\left(đpcm\right)\)
- Nếu trong 3 số x;y;z có 1 số chia 3 dư 1; 1 số chia 3 dư 2; giả sử 2 số đó là y;z
Khi đó, \(x+y⋮̸3;y+z⋮3;z+x⋮̸3\)
Để (1) đúng thì \(y+z⋮9\left(đpcm\right)\)
Vậy ta có đpcm
\(M=x^{2017}-x^{2013}=x^{2013}\left(x^4-1\right)=x^{2013}\left(x^2-1\right)\left(x^2+1\right)=x^{2012}.x\left(x-1\right)\left(x+1\right)\)
Do \(x\left(x-1\right)\left(x+1\right)\) là tích 3 số nguyên liên tiếp nên \(x\left(x-1\right)\left(x+1\right)⋮6\)(1)
Ta lại có : \(x\left(x-1\right)\left(x+1\right)\left(x^2+1\right)=x\left(x+1\right)\left(x-1\right)\left(x^2-4+5\right)\)
\(=\left(x-1\right)x\left(x+1\right)\left(x-2\right)\left(x+2\right)-5x\left(x+1\right)\left(x-1\right)\)
Vì \(\left(x-1\right)x\left(x+1\right)\left(x-2\right)\left(x+2\right)⋮5\)(tích 5 số nguyên LT)
Nên \(\left(x-1\right)x\left(x+1\right)\left(x-2\right)\left(x+2\right)-5x\left(x+1\right)\left(x-1\right)⋮5\)
=> M chia hết cho 5 (2)
Từ (1) ; (2) => M chia hết cho 30