Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(S=\left(x+2012\right)+\left(2y-2013\right)+\left(3z+2014\right)=a+b+c\)
\(P=a^5+b^5+c^5\)
\(P-S=\left(a^5-a\right)+\left(b^5-b\right)+\left(c^5-c\right)\)
\(=a\left(a-1\right)\left(a+1\right)\left(a^2+1\right)+b\left(b-1\right)\left(b+1\right)\left(b^2+1\right)+c\left(c-1\right)\left(c+1\right)\left(c^2+1\right)\)
Ta chứng minh \(a\left(a-1\right)\left(a+1\right)\left(a^2+1\right)\) chia hết cho 30 .
tương tự => \(b\left(b-1\right)\left(b+1\right)\left(b^2+1\right);c\left(c-1\right)\left(c+1\right)\left(c^2+1\right)\)chia hết cho 30.
=> P -S chia hết cho 30 => (dpcm)
\(\hept{\begin{cases}x-y=3\\\left(x-y\right).\left(x^2+xy+y^2\right)=9\end{cases}}\Leftrightarrow\hept{\begin{cases}x-y=3\\x^2+xy+y^2=3\end{cases}\Leftrightarrow\hept{\begin{cases}y=x-3\\x^2+x.\left(x-3\right)+\left(x-3\right)^2=3\left(I\right)\end{cases}}}\)
Phương trình (I) tương đương: \(x^2+x^2-3x+x^2-6x+9=3\Leftrightarrow3x^2-9x+6=0\Rightarrow x^2-3x+2=0\)
\(\Leftrightarrow\left(x-1\right).\left(x-2\right)=0\Leftrightarrow\orbr{\begin{cases}x-1=0\\x-2=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=1\\x=2\end{cases}\Leftrightarrow\orbr{\begin{cases}y=-2\\y=-1\end{cases}}}\)
Vậy \(\left(x,y\right)=\left(1,-2\right),\left(2,-1\right)\)
Điều kiện \(x,y,z\ge\frac{1}{4}\)
Cộng các phương trình trong hệ được :
\(2\left(x+y+z\right)=\sqrt{4x-1}+\sqrt{4y-1}+\sqrt{4z-1}\)
\(\Leftrightarrow4\left(x+y+z\right)=2\sqrt{4x-1}+2\sqrt{4y-1}+2\sqrt{4z-1}\)
\(\Leftrightarrow\left(\sqrt{4x-1}-1\right)^2+\left(\sqrt{4y-1}-1\right)^2+\left(\sqrt{4z-1}-1\right)^2=0\)
\(\Leftrightarrow\hept{\begin{cases}\sqrt{4x-1}-1=0\\\sqrt{4y-1}-1=0\\\sqrt{4z-1}-1=0\end{cases}}\) \(\Leftrightarrow x=y=z=\frac{1}{2}\)
Từ đó thay vào yêu cầu đề bài để tính.