Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
Ta thấy: $n^2+n+1=n(n+1)+1$
Vì $n, n+1$ là 2 số nguyên liên tiếp nên 1 trong 2 số sẽ có 1 số chẵn.
$\Rightarrow n(n+1)\vdots 2$
$\Rightarrow n^2+n+1=n(n+1)+1$ lẻ
$\Rightarrow n^2+n+1\not\vdots 10$
x + 6 chia hết cho x + 3
=> x + 3 + 3 chia hết cho x + 3
=> 3 chia hết cho x + 3
=> (x + 3) \(\in\) Ư(3)
=> (x + 3) \(\in\) {-3; -1; 1; 3}
=> x \(\in\) {-6; -4; -2; 0}
Có đó bạn. Nếu bạn lấy bất kì số \(n\) nào có dạng \(10k\pm3\) (tức là chia 10 dư 3 hoặc dư 7) thì \(n^{10}+1\) sẽ chia hết cho 10. Ví dụ:
\(7=10.1-3\Rightarrow7^{10}+1=282475250⋮10\)
Giả sử đề yêu cầu tìm x là số nguyên
a) Để (3x + 2) ⋮ x thì 2 ⋮ x
⇒ x ∈ Ư(2) = {-2; -1; 1; 2}
b) Để (4x + 7) ⋮ x thì 7 ⋮ x
⇒ x ∈ Ư(7) = {-7; -1; 1; 7}
Lời giải:
$5x+12\vdots x-2$
$\Rightarrow (5x-10)+22\vdots x-2$
$\Rightarrow 5(x-2)+22\vdots x-2$
$\Rightarrow 22\vdots x-2$
$\Rightarrow x-2\in\left\{1; -1; 2;-2;11;-11;22;-22\right\}$
$\Rightarrow x\in\left\{3; 1; 4; 0; 13; -9; 24; -20\right\}$
a) Để \(38-3x⋮x\)mà \(3x⋮x\)
\(\Rightarrow\)\(38⋮x\)\(\Rightarrow\)\(x\inƯ\left(38\right)\in\left\{\pm1;\pm2;\pm9;\pm38\right\}\)
Vì \(x\inℕ\)\(\Rightarrow\)\(x\in\left\{1;2;9;38\right\}\)
Vậy \(x\in\left\{1;2;9;38\right\}\)
b) Ta có: \(3x+7=\left(3x-3\right)+10=3.\left(x-1\right)+10\)
- Để \(3x+7⋮x-1\)\(\Leftrightarrow\)\(3.\left(x-1\right)+10⋮x-1\)mà \(3.\left(x-1\right)⋮x-1\)
\(\Rightarrow\)\(10⋮x-1\)\(\Rightarrow\)\(x-1\inƯ\left(10\right)\in\left\{\pm1;\pm2;\pm5;\pm10\right\}\)
- Ta có bảng giá trị:
\(x-1\) | \(-1\) | \(1\) | \(-2\) | \(2\) | \(-5\) | \(5\) | \(-10\) | \(10\) |
\(x\) | \(0\) | \(2\) | \(-1\) | \(3\) | \(-4\) | \(6\) | \(-9\) | \(11\) |
\(\left(TM\right)\) | \(\left(TM\right)\) | \(\left(L\right)\) | \(\left(TM\right)\) | \(\left(L\right)\) | \(\left(TM\right)\) | \(\left(L\right)\) | \(\left(TM\right)\) |
( Loại vì \(x\inℕ\))
Vậy \(x\in\left\{0;2;3;6;11\right\}\)
c) Ta có: \(2x+19=\left(2x+1\right)+18\)
- Để \(2x+19⋮2x+1\)\(\Leftrightarrow\)\(\left(2x+1\right)+18⋮2x+1\)mà \(2x+1⋮2x+1\)
\(\Rightarrow\)\(18⋮2x+1\)\(\Rightarrow\)\(2x+1\inƯ\left(18\right)\in\left\{\pm1;\pm2;\pm3;\pm6;\pm9;\pm18\right\}\)
Vì \(2x+1\)là lẻ \(\Rightarrow\)\(2x+1\in\left\{\pm1;\pm3;\pm9\right\}\)
- Ta có bảng giá trị:
\(2x+1\) | \(-1\) | \(1\) | \(-3\) | \(3\) | \(-9\) | \(9\) |
\(x\) | \(-1\) | \(0\) | \(-2\) | \(1\) | \(-5\) | \(4\) |
\(\left(L\right)\) | \(\left(TM\right)\) | \(\left(L\right)\) | \(\left(TM\right)\) | \(\left(L\right)\) | \(\left(TM\right)\) |
( loại vì \(x\inℕ\))
Vậy \(x\in\left\{0;1;4\right\}\)
10 - 3x ⋮ x ⇔ 10 ⋮ x ⇔ x ϵ { -10;-5;-2;-1;1;2;5;10}
10 - 3x ⋮ x ⇔ 10 ⋮ x ⇔ x ϵ { -10;-5;-2;-1;1;2;5;10}