Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1/ x^2 +4xy +4y^2 = (x +2y)^2
2/ -x^3 +9x^2 -27x+27= - (x^3 -9x^2+27x-27) = - (x-3)^3
3/ 8x^6 +36x^4y+54^2y^2+27y^3 = (2x^2+3y)^3
4/ x^3 - 6x^2y+12xy^2 -8y^3= (x-2y)^3
a) x^4 - x^3 - x + 1
= x^3 ( x - 1 ) - ( x- 1 )
= ( x^3 - 1 )(x - 1)
= ( x- 1 )^2 (x^2 + x + 1 )
a)x4-x3-x+1
=x3(x-1)-(x-1)
=(x-1)(x3-1)
=(x-1)(x-1)(x2+x+1)
=(x-1)2(x2+x+1)
b)5x2-4x+20xy-8y
(sai đề)
Bài 2:
\(A=x^2+4y^2-2x+10-4xy-4y\)
\(=\left(x^2+4xy+4y^2\right)-2\left(x+2y\right)+10\)
\(=\left(x+2y\right)^2-2\left(x+2y\right)+10\)
Thay x + 2y = 5 vào biểu thức A ta được: \(A=5^2-2.5+10=25\)
\(B=\left(x^2+4xy+4y^2\right)-2\left(x+2y\right)\left(y-1\right)+y^2-2y+1\)
\(=x^2+4xy+4y^2-2xy+2x-4y^2+4y+y^2-2y+1\)
\(=x^2+2xy+y^2+2x+2y+1\)
\(=\left(x+y\right)^2+2\left(x+y\right)+1\)
Thay x + y = 5 vào biểu thức B ta được: \(B=5^2+2.5+1=25+10+1=36\)
\(C=x^2-y^2-4x=\left(x^2-4x+4\right)-y^2-4\)
\(=\left(x-2\right)^2-y^2-4\) \(=\left(x-y-2\right)\left(x-2+y\right)-4\)
Thay x + y = 2 vào C ta được: \(C=\left(x-2-y\right)\left(2-2\right)-4=0-4=-4\)
\(D=x^2+y^2+2xy-4x-4y-3\)
\(=\left(x+y\right)^2-4\left(x+y\right)-3\) Thay x + y = 4 vào D ta được:
\(D=4^2-4.4-3=16-16-3=-3\)
Bài 3:
a) \(N=-9x^2+12x-5=-\left(9x^2-12x+4\right)-1\)
\(=-\left(3x-2\right)^2-1\)
Do \(\left(3x-2\right)^2\ge0\) nên \(-\left(3x-2\right)^2-1< 0\)
Vậy N < 0
b) ghi đề cẩn thận lại đi, mk k hiểu
Câu 2:
\(B=x^2+2x+y^2-2x-2xy+37\)
\(=\left(x^2-2xy+y^2\right)+2\left(x-y\right)+37\)
\(=\left(x-y\right)^2+2\left(x-y\right)+37\)
\(=7^2+2\cdot7+37=49+37+14=100\)
Câu 3:
\(C=\left(x^2+4xy+4y^2\right)-2\left(x+2y\right)+10\)
\(=\left(x+2y\right)^2-2\left(x+2y\right)+10\)
\(=5^2-2\cdot5+10=25\)
a: \(=2x^6-x^5-\dfrac{1}{3}x^4\)
b: \(=4xy^2-x^3+y^2-\dfrac{3}{4}x^2y\)
c: \(\left(3x^3-2xy^3+4y^2\right)\cdot\left(\dfrac{1}{6}x^2y^2\right)\)
\(=\dfrac{1}{2}x^5y^2-\dfrac{1}{3}x^3y^5+\dfrac{2}{3}x^2y^4\)