K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
20 tháng 2 2024

Lời giải:

\((1+\frac{1}{3})(1+\frac{1}{8})(1+\frac{1}{15})...(1+\frac{1}{99})\\ =\frac{4}{3}.\frac{9}{8}.\frac{16}{15}....\frac{100}{99}\\ =\frac{2^2.3^2.4^2....10^2}{1.3.2.4.3.5....9.11}=\frac{(2.3.4..10)(2.3.4..10)}{(1.2.3...9)(3.4.5...11)}=10.\frac{2}{11}=\frac{20}{11}\)

17 tháng 10 2018

hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhgggggggggggggggggggggggdhuhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

28 tháng 7 2015

lm xong chắc zô quan tài nằm vì say sóng qá

11 tháng 10 2017

a) 1619 và 825 

Ta có :

1619 = ( 24 )19 = 276

825 = ( 23 )25 = 275

Vì 276 > 275 Nên 1619 > 825

b) 536 và 1124

Ta có :

536 = ( 53 )12 = 12512

1124 = ( 112 )12 = 12112

Vì 12512 > 12112 Nên 536 > 1124

11 tháng 10 2017

1.

\(M=3^0+3^1+......+3^{50}.\)

\(\Rightarrow3M=3+3^2+.......+3^{51}\)

\(\Rightarrow3M-M=\left(3+3^2+.......+3^{51}\right)-\left(3^0+3+.....+3^{50}\right)\)

\(\Rightarrow2M=3^{51}-1\)

\(\Rightarrow M=\frac{3^{51}-1}{2}\)

2.

\(a,\)Ta có : \(16^{19}=\left(2^4\right)^{19}=2^{76}\)

                     \(8^{25}=\left(2^3\right)^5=2^{75}\)

Vì \(2^{76}>2^{75}\Rightarrow16^{19}>8^{25}\)

\(b,\)Ta có : \(5^{36}=\left(5^3\right)^{12}=125^{12}\)

                      \(11^{24}=\left(11^2\right)^{12}=121^{12}\)

Vì \(125^{12}>121^{12}\Rightarrow5^{36}>11^{24}\)

11 tháng 4 2016

A=1/1.3 + 1/3.5 + 1/5.7 + 1/7.9 + 1/9.11 + 1/11.13 + 1/13.15

A=1/1 - 1/3 +1/3 - 1/5 +1/5 -1/7+......+1/13 - 1/15

A=1 - 1/15

A=1/14

11 tháng 4 2016

bạn ơi: 

1/195 mới bằng 1/13.15 mà!!

10 tháng 5 2019

đọc mà phát choáng

3 tháng 7 2021

Giúp tôi với, nhanh nhé. Cảm ơn!

7 tháng 5 2017

a, Ta có: \(\frac{2001}{2002}=\frac{2002-1}{2002}=\frac{2002}{2002}-\frac{1}{2002}=1-\frac{1}{2002}\)

\(\frac{2000}{2001}=\frac{2001-1}{2001}=\frac{2001}{2001}-\frac{1}{2001}=1-\frac{1}{2001}\)

Vì \(\frac{1}{2002}< \frac{1}{2001}\Rightarrow1-\frac{1}{2002}>1-\frac{1}{2001}\Rightarrow\frac{2001}{2002}>\frac{2000}{2001}\)

b, Ta có: \(\left(\frac{1}{80}\right)^7>\left(\frac{1}{81}\right)^7=\left(\frac{1}{3^4}\right)^7=\left(\frac{1}{3}\right)^{28}=\frac{1}{3^{28}}\)

\(\left(\frac{1}{243}\right)^6=\left(\frac{1}{3^5}\right)^6=\left(\frac{1}{3^5}\right)^6=\frac{1}{3^{30}}\)

Vì \(\frac{1}{3^{28}}>\frac{1}{3^{30}}\Rightarrow\left(\frac{1}{81}\right)^7>\left(\frac{1}{243}\right)^6\Rightarrow\left(\frac{1}{80}\right)^7>\left(\frac{1}{243}\right)^6\)

c, Ta có: \(\left(\frac{3}{8}\right)^5=\frac{3^5}{\left(2^3\right)^5}=\frac{243}{2^{15}}>\frac{243}{3^{15}}>\frac{125}{3^{15}}=\frac{5^3}{\left(3^5\right)^3}=\frac{5^3}{243^3}=\left(\frac{5}{243}\right)^3\)

Vậy \(\left(\frac{3}{8}\right)^5>\left(\frac{5}{243}\right)^3\)

d, Ta có: \(\frac{2011}{2012}>\frac{2011}{2012+2013}\)

\(\frac{2012}{2013}>\frac{2012}{2012+2013}\)

\(\Rightarrow\frac{2011}{2012}+\frac{2012}{2013}>\frac{2011}{2012+2013}+\frac{2012}{2012+2013}=\frac{2011+2012}{2012+2013}\)

e, \(C=\frac{20^{10}+1}{20^{10}-1}=\frac{20^{10}-1+2}{20^{10}-1}=\frac{20^{10}-1}{20^{10}-1}+\frac{2}{2^{10}-1}=1+\frac{2}{2^{10}-1}\)

\(D=\frac{20^{10}-1}{20^{10}-3}=\frac{20^{10}-3+2}{20^{10}-3}=\frac{20^{10}-3}{20^{10}-3}+\frac{2}{2^{10}-3}=1+\frac{2}{2^{10}-3}\)

Vì \(\frac{2}{10^{10}-1}< \frac{2}{10^{10}-3}\Rightarrow1+\frac{2}{10^{10}-1}< 1+\frac{2}{10^{10}-3}\Rightarrow C< D\)

g, \(G=\frac{10^{100}+2}{10^{100}-1}=\frac{10^{100}-1+3}{10^{100}-1}=\frac{10^{100}-1}{10^{100}-1}+\frac{3}{10^{100}-1}=1+\frac{3}{10^{100}-1}\)

\(H=\frac{10^8}{10^8-3}=\frac{10^8-3+3}{10^8-3}=\frac{10^8-3}{10^8-3}+\frac{3}{10^8-3}=1+\frac{3}{10^8-3}\)

Vì \(\frac{3}{10^{100}-1}< \frac{3}{10^8-3}\Rightarrow1+\frac{3}{10^{100}-1}< 1+\frac{3}{10^8-3}\Rightarrow G< H\)

h, Vì E < 1 nên:

\(E=\frac{98^{99}+1}{98^{89}+1}< \frac{98^{99}+1+97}{98^{89}+1+97}=\frac{98^{99}+98}{98^{89}+98}=\frac{98\left(98^{98}+1\right)}{98\left(98^{88}+1\right)}=\frac{98^{98}+1}{98^{88}+1}=F\)

Vậy E = F

12 tháng 6 2015

a)\(A=\frac{1}{15}+\frac{1}{35}+...+\frac{1}{195}=\frac{1}{3.5}+\frac{1}{5.7}+...+\frac{1}{13.15}=\frac{1}{2}\left(\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{13}-\frac{1}{15}\right)=\frac{1}{2}\left(\frac{1}{3}-\frac{1}{15}\right)=\frac{2}{15}\)

b)\(M=1+3+3^2+...+3^{25}=\frac{3^{26}-1}{3-1}=\frac{3^{26}-1}{2}<\frac{3^{26}}{2}\Rightarrow M

13 tháng 6 2015

bạn đọc lại đề bài b) đi