Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(4^x.2^x=64=2^6\)
\(\Rightarrow2^{2x}.2^x=2^6\)
\(\Rightarrow2^{2x+x}=2^6\)
\(\Rightarrow2x+x=6\)
\(\Rightarrow3x=6\Rightarrow x=2\)
b) \(\frac{x+1}{5}=\frac{20}{x+1}\)
\(\Rightarrow\left(x+1\right).\left(x+1\right)=20.5=100=10^2\)
\(\Rightarrow\left(x+1\right)^2=10^2\)
\(\Rightarrow x+1=10\Rightarrow x=9\)
A = 222555
A = 111555.2555
A = 111555.(25)111
A = 111555.32111
B = 555222
B = 111222.5222
B = 111222.(52)111
B = 111222.25111
Vì 111555 > 111222 và 32111 > 25111 => 111555.32111 > 111222.25111
=> A > B
Ta có :
+) \(3^{222}=\left(3^2\right)^{111}=9^{111}\)
+) \(2^{555}=\left(2^5\right)^{111}=32^{111}\)
Vì \(9^{111}< 32^{111}\)\(\Rightarrow\)\(3^{222}< 2^{555}\)
Vậy \(3^{222}< 2^{555}\)
_Chúc bạn học tốt_
222555 = ( 2.111 )5.111 = 25.111.1115.111
555222 = ( 5.111 )2.111 = 52.111 .1112.111
Vì 25 > 52 ( 32 > 25 ) và 1115 > 1112 ( 5 > 2 ) nên 25.111.1115.111 > 52.111 .1112.111
hay 222555 > 555222
\(\frac{222^{555}}{555^{222}}=\frac{\left(2.111\right)^{\left(5.111\right)}}{\left(5.111\right)^{\left(2.111\right)}}=111^{\left(111\left(5-2\right)\right)}.\left(\frac{2^5}{5^2}\right)^{111}=111^{333}.\left(\frac{32}{25}\right)^{1111}>1\)
\(222^{555}>555^{222}\)
1. Tính
\(\frac{2^7\cdot9^3}{6^5\cdot8^2}=\frac{2^7\cdot\left(3^2\right)^3}{\left(3\cdot2\right)^5\cdot\left(2^3\right)^2}=\frac{2^7\cdot3^6}{3^5\cdot2^5\cdot2^6}=\frac{2^7\cdot3^5\cdot3}{3^5\cdot2^{11}}=\frac{2^7\cdot3}{2^7\cdot2^4}=\frac{3}{2^4}=\frac{3}{16}\)
2. Tìm x
\(8^x:4^x=4\Rightarrow\left(8:4\right)^x=4\Rightarrow2^x=4\Rightarrow x=2\)
3. Ta có : \(222^{555}=\left(2\cdot111\right)^{555}=2^{555}\cdot111^{555}=\left(2^5\right)^{111}\cdot111^{555}=32^{111}\cdot111^{555}\)(1)
\(555^{222}=\left(5\cdot111\right)^{222}=5^{222}\cdot111^{222}=\left(5^2\right)^{111}\cdot111^{222}=25^{111}\cdot111^{222}\)(2)
Từ (1) và (2) ta thấy : 32 > 25 => 32111 > 25111 và 111555 > 111222 ( vì 555 > 222)
Vậy 222555 > 555222