\(S=1+\dfrac{1}{3}+\dfrac{1}{9}+...+\dfrac{1}{19683}\)

2) tính 

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 10 2023

1, Ta có \(\dfrac{\dfrac{1}{3}}{1}=\dfrac{1}{3};\dfrac{\dfrac{1}{9}}{\dfrac{1}{3}}=\dfrac{1}{3};...\)

-> Là cấp số nhân, q = 1/3 

Ta có \(S_9=1.\dfrac{1-\left(\dfrac{1}{3}\right)^9}{1-\left(\dfrac{1}{3}\right)}\approx1,5\)

b, Ta có \(\dfrac{\dfrac{1}{5}}{1}=\dfrac{1}{5};\dfrac{\dfrac{1}{25}}{\dfrac{1}{5}}=\dfrac{1}{5};...\)

-> Là cấp số nhân, q = 1/5 

\(S_7=\dfrac{1-\left(\dfrac{1}{5}\right)^7}{1-\dfrac{1}{5}}\approx1,25\)

1: \(S=1+\dfrac{1}{3}+\dfrac{1}{9}+...+\dfrac{1}{3^9}\)

\(=\left(\dfrac{1}{3}\right)^0+\left(\dfrac{1}{3}\right)^1+...+\left(\dfrac{1}{3}\right)^9\)

u1=1; q=1/3

\(S_9=\dfrac{u1\cdot\left(1-q^9\right)}{1-q}=\dfrac{1\left(1-\left(\dfrac{1}{3}\right)^9\right)}{1-\dfrac{1}{3}}\)

\(=\dfrac{3}{2}\left(1-\dfrac{1}{3^9}\right)\)

2:

\(S=\left(\dfrac{1}{5}\right)^0+\left(\dfrac{1}{5}\right)^1+...+\left(\dfrac{1}{5}\right)^7\)

\(u1=1;q=\dfrac{1}{5}\)

\(S_7=\dfrac{1\cdot\left(1-q^7\right)}{1-q}=\dfrac{1-\left(\dfrac{1}{5}\right)^7}{1-\dfrac{1}{5}}=\dfrac{5}{4}\left(1-\dfrac{1}{5^7}\right)\)

Bài 2: 

a: \(=\dfrac{7}{9}\left(\dfrac{7}{6}-\dfrac{19}{20}-\dfrac{1}{15}\right)+\dfrac{22}{5}\cdot\dfrac{1}{24}\)

\(=\dfrac{7}{9}\cdot\dfrac{3}{20}+\dfrac{22}{120}=\dfrac{7}{60}+\dfrac{11}{60}=\dfrac{18}{60}=\dfrac{3}{10}\)

b: \(=\left(\dfrac{35-32}{60}\right)^2+\dfrac{4}{5}\cdot\dfrac{70-45}{80}\)

\(=\dfrac{1}{400}+\dfrac{4\cdot25}{400}=\dfrac{101}{400}\)

7 tháng 10 2019

Tính tổng :

a) 12+322+523+....+2n12n12+322+523+....+2n−12n

b) 1222+3242+....+(1)n1.n\(^2\)

Giải

a) HD: Đặt tổng là S\(_n\) và tính 2S\(_n\)

ĐS : S\(_n\)=3−\(\frac{2n+3}{2^n}\)

b) HD: n\(^2\)- (n+1)\(^2\)= -2n-1

Ta có: 1\(^2\)-2\(^2\)= -3; 3\(^2\) - 4\(^2\)= -7;....

Ta có: u\(_1\)= -3, d= -4 và tính S\(_n\) trong từng trường hợp n chẵn, lẻ.


Sn=3−2n+32nb) HD : b) HD : n2−(n+1)2=−2n−1n2−(n+1)2=−2n−1 Ta có 12−22=−3;32−42=−7;...12−22=−3;32−42=−7;... b) HD :

9 tháng 4 2017

a) Với n = 1, vế trái chỉ có một số hạng là 2, vế phải bằng = 2

Vậy hệ thức đúng với n = 1.

Đặt vế trái bằng Sn.

Giả sử đẳng thức a) đúng với n = k ≥ 1, tức là

Sk= 2 + 5 + 8 + …+ 3k – 1 =

Ta phải chứng minh rằng cũng đúng với n = k + 1, nghĩa là phải chứng minh

Sk+1 = 2 + 5 + 8 + ….+ 3k -1 + (3(k + 1) – 1) =

Thật vậy, từ giả thiết quy nạp, ta có: Sk+1 = Sk + 3k + 2 = + 3k + 2

= (điều phải chứng minh)

Vậy theo nguyên lí quy nạp toán học, hệ thức đúng với mọi n ε N*

b) Với n = 1, vế trái bằng , vế phải bằng , do đó hệ thức đúng.

Đặt vế trái bằng Sn.

Giả sử hệ thức đúng với n = k ≥ 1, tức là

Ta phải chứng minh .

Thật vậy, từ giả thiết quy nạp, ta có:

= (điều phải chứng minh)

Vậy theo nguyên lí quy nạp toán học, hệ thức b) đúng với mọi n ε N*

c) Với n = 1, vế trái bằng 1, vế phải bằng = 1 nên hệ thức đúng với n = 1.

Đặt vế trái bằng Sn.

Giả sử hệ thức c) đúng với n = k ≥ 1, tức là

Sk = 12 + 22 + 32 + …+ k2 =

Ta phải chứng minh

Thật vậy, từ giả thiết quy nạp ta có:

Sk+1 = Sk + (k + 1)2 = = (k + 1). = (k + 1)

(đpcm)

Vậy theo nguyên lí quy nạp toán học, hệ thức đúng với mọi n ε N*



28 tháng 7 2017

Đây là toán lớp 8 . I am sorry

19 tháng 8 2017

Mình tìm được 3 số a,b,c thỏa mãn là a = 1, b=1, c= -1/2

Thế vào biểu thức được kết quả là -3/2