\(\sqrt{2007+\sqrt{2007+\sqrt{2007+...+\sqrt{2007}}}}\)...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 6 2017

lấy Pc casio ra mà bấm :v mà hình như đề sai

22 tháng 6 2017

Sai ở đâu?

Bài 1: Cho dãy số (un) được xác định như sau: Un = n2 + (n+1)2  + (n+2)2 + (n + 3)2Với n =1,2 3,… Tìm tất cả các số hạng của dãy số chia hết cho 10.Bài 2: Cho dãy số được xác định bởi:  \(\hept{\begin{cases}A_0=0\\a_{n+1}=\frac{n\left(n+1\right)}{\left(n+2\right)\left(n+3\right)}\end{cases}.\left(a_n+1\right)}\) với n là số tự nhiên khác 0.a)     Tính an với n =1,2,3,4,5,6. (kết quả viết dưới dạng phân số)b)   ...
Đọc tiếp

Bài 1: Cho dãy số (un) được xác định như sau: Un = n2 + (n+1)+ (n+2)2 + (n + 3)2

Với n =1,2 3,… Tìm tất cả các số hạng của dãy số chia hết cho 10.

Bài 2: Cho dãy số được xác định bởi:  \(\hept{\begin{cases}A_0=0\\a_{n+1}=\frac{n\left(n+1\right)}{\left(n+2\right)\left(n+3\right)}\end{cases}.\left(a_n+1\right)}\)

 với n là số tự nhiên khác 0.

a)     Tính an với n =1,2,3,4,5,6. (kết quả viết dưới dạng phân số)

b)    Tính a2012 (Lấy kết quả đúng)

( Gợi ý: - Nhân cả tử và mẫu của a2 với cùng 1 số rồi tách tử và mẫu thành tích, tương tự với a3. Từ đó tìm CTTQ của an)

Bài 3:

Cho dãy số xác định bởi: \(\hept{\begin{cases}U_1=\sqrt{2}\\U_{n+1}=\sqrt{2^{U_n}}\end{cases}}\)  Với n là số tự nhiên khác 0. Tính U2003.

Bài 4: Tính giá trị biểu thức A biết: \(A=\sqrt{2007+\sqrt{2007+...+\sqrt{2007}}}\)  (n dấu căn)

0
24 tháng 7 2020

Bằng 4

23 tháng 7 2020

Câu 1 :

a, Đáp án nên nó đúng nhoa

b, MinA = 2016,75 .

Câu 2 :

a, - \(\left[{}\begin{matrix}x=\pm1\\x=3\end{matrix}\right.\)

b, - Với m bằng - 3 .

Câu 3 :

a, \(\left[{}\begin{matrix}x=1\\x=-4\end{matrix}\right.\)

b, Hỏi tí vế 2 là bằng 4 hay - 4 .