\(\frac{3x-2y}{37}\)= \(\frac{5y-3z}{15}\)
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 10 2017

(3x-2y)/37=(5y-3z)/15 <=> 45x-30y=185y-111z <=> 452x-215y+111z=0 (1)
(5y-3z)/15=(2z-5x)/2 <=> 10y+6z=-75x+30z <=> 75x+10y-36z=0 (2)
10x-3y-2z=-4 (3)
Giải hệ (1), (2), (3) ta được: x=-8, y=-12, z=-20

Botay.com.vn

1 tháng 1 2016

dựa vào dạng toán dãy tỉ số bằng nhau

1 tháng 1 2016

pạn trình bày cho mk tham khảo vs

6 tháng 10 2017

(3x-2y)/37=(5y-3z)/15 <=> 45x-30y=185y-111z <=> 452x-215y+111z=0 (1)
(5y-3z)/15=(2z-5x)/2 <=> 10y+6z=-75x+30z <=> 75x+10y-36z=0 (2)
10x-3y-2z=-4 (3)
Giải hệ (1), (2), (3) ta được: x=-8, y=-12, z=-20

7 tháng 3 2020

\(\frac{3x-2y}{37}=\frac{5y-3z}{15}=\frac{2z-5x}{2}\)

\(\Leftrightarrow\frac{5\left(3x-2y\right)}{5.37}=\frac{2\left(5y-3z\right)}{2.15}=\frac{3\left(2z-5x\right)}{3.2}\)

\(\Leftrightarrow\frac{15x-10y}{5.37}=\frac{10y-6z}{2.15}=\frac{6z-15x}{3.2}\)

Áp dụng tính chất của dãy tỉ số bằng nhau:

\(\Rightarrow\frac{15x-10y}{5.37}=\frac{10y-6z}{2.15}=\frac{6z-15x}{3.2}=\frac{15x-10y+10y-6z+6z-15x}{5.37+2.15+3.2}=0\)

\(\Rightarrow\hept{\begin{cases}\frac{3x-2y}{37}=0\\\frac{5y-3z}{15}=0\end{cases}\Leftrightarrow\hept{\begin{cases}3x-2y=0\\5y-3z=10\end{cases}\Leftrightarrow}\hept{\begin{cases}3x=2y\\5y=3z\end{cases}\Leftrightarrow}\hept{\begin{cases}\frac{x}{2}=\frac{y}{3}\\\frac{y}{3}=\frac{z}{5}\end{cases}\Leftrightarrow}\frac{x}{2}=\frac{y}{3}=\frac{z}{5}}\)

\(\Leftrightarrow\frac{10x}{20}=\frac{3y}{9}=\frac{2z}{10}\)

Áp dụng tính của dãy tỉ số bằng nhau:

\(\Leftrightarrow\frac{10x}{20}=\frac{3y}{9}=\frac{2z}{10}=\frac{10x-3y-2z}{20-9-10}=-\frac{4}{1}\)

\(\Leftrightarrow\hept{\begin{cases}\frac{x}{2}=-4\\\frac{y}{3}=-4\\\frac{z}{5}=-4\end{cases}\Leftrightarrow\hept{\begin{cases}x=-8\\y=-12\\z=-20\end{cases}}}\)