Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{3x-2y}{37}=\frac{5y-3z}{15}=\frac{2z-5x}{2}\)
\(\Leftrightarrow\frac{5\left(3x-2y\right)}{5.37}=\frac{2\left(5y-3z\right)}{2.15}=\frac{3\left(2z-5x\right)}{3.2}\)
\(\Leftrightarrow\frac{15x-10y}{5.37}=\frac{10y-6z}{2.15}=\frac{6z-15x}{3.2}\)
Áp dụng tính chất của dãy tỉ số bằng nhau:
\(\Rightarrow\frac{15x-10y}{5.37}=\frac{10y-6z}{2.15}=\frac{6z-15x}{3.2}=\frac{15x-10y+10y-6z+6z-15x}{5.37+2.15+3.2}=0\)
\(\Rightarrow\hept{\begin{cases}\frac{3x-2y}{37}=0\\\frac{5y-3z}{15}=0\end{cases}\Leftrightarrow\hept{\begin{cases}3x-2y=0\\5y-3z=10\end{cases}\Leftrightarrow}\hept{\begin{cases}3x=2y\\5y=3z\end{cases}\Leftrightarrow}\hept{\begin{cases}\frac{x}{2}=\frac{y}{3}\\\frac{y}{3}=\frac{z}{5}\end{cases}\Leftrightarrow}\frac{x}{2}=\frac{y}{3}=\frac{z}{5}}\)
\(\Leftrightarrow\frac{10x}{20}=\frac{3y}{9}=\frac{2z}{10}\)
Áp dụng tính của dãy tỉ số bằng nhau:
\(\Leftrightarrow\frac{10x}{20}=\frac{3y}{9}=\frac{2z}{10}=\frac{10x-3y-2z}{20-9-10}=-\frac{4}{1}\)
\(\Leftrightarrow\hept{\begin{cases}\frac{x}{2}=-4\\\frac{y}{3}=-4\\\frac{z}{5}=-4\end{cases}\Leftrightarrow\hept{\begin{cases}x=-8\\y=-12\\z=-20\end{cases}}}\)
- Ta có: 3x-2y/37=5y-3z/15=2z-5x/2
Áp dụng tính chất dãy tỉ số bằng nhau: 3x-2y/37=5y-3z/15=2z-5x/2=0
Suy ra 3x-2y=0 thì 3x=2y thì x/2=y/3
5y-3z=0 thì 5y=3z thì y/3=z/5
2z-5x=0 thì 2z= 5x thì z/5=x/2
Suy ra: x/2=y/3=z/5
Áp dụng tính chất dãy tỉ số bằng nhau: x/2=y/3=z/5=(10x-3y-2z)/(20-9-10)=-4/1=-4
Suy ra x=-8 y=-12 z=-20
(3x-2y)/37=(5y-3z)/15 <=> 45x-30y=185y-111z <=> 452x-215y+111z=0 (1)
(5y-3z)/15=(2z-5x)/2 <=> 10y+6z=-75x+30z <=> 75x+10y-36z=0 (2)
10x-3y-2z=-4 (3)
Giải hệ (1), (2), (3) ta được: x=-8, y=-12, z=-20
(3x-2y)/37=(5y-3z)/15 <=> 45x-30y=185y-111z <=> 452x-215y+111z=0 (1)
(5y-3z)/15=(2z-5x)/2 <=> 10y+6z=-75x+30z <=> 75x+10y-36z=0 (2)
10x-3y-2z=-4 (3)
Giải hệ (1), (2), (3) ta được: x=-8, y=-12, z=-20
dựa vào dạng toán dãy tỉ số bằng nhau
pạn trình bày cho mk tham khảo vs