K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 9 2017

=>-(x2+8x-5)

=>-(x2 +2.4x+16-5-16)

=>-[(x+4)2-21]

=>-(x+4)2+21

do -(x+4)2 luôn > hoặc= 0 với mọi x

=>-(x+4)2+21 >/21

=>A>/21

=>GTLN của A=21 Khi x+4=0

x=-4

10 tháng 9 2017

mấy bài nữa mai mình giải nốt cho

giờ mình bận rồi

22 tháng 10 2018

\(A=4x^2+4x+11\)

\(=\left(4x^2+4x+1\right)+10\)

\(=\left(2x+1\right)^2+10\ge10\)

Min A = 10 khi:  2x + 1 = 0

                      <=> x = -1/2

10 tháng 7 2020

jbdgvsvvsgvhvhb

21 tháng 3 2019

\(4.\)

\(a.A=5-8x-x^2\)

\(=-\left(16+8x+x^2\right)+21\)

\(=-\left(4+x\right)^2+21\le21\)

\(A_{max}=21\)

Dấu '='xảy ra khi \(x=-4\)

\(b.B=5-x^2+2x-4y^2-4y\)

\(=-\left(1-2x+x^2\right)-\left(4+4y+4y^2\right)+10\)

\(=-\left(1-x\right)^2-\left(2+2y\right)^2+10\le10\)

\(B_{max}=10\)

Dấu '=' xảy ra khi \(x=1;y=-1\)

\(5.\)

\(a.\) Ta có:\(a^2+b^2+c^2=ab+bc+ca\)

              \(\Leftrightarrow2a^2+2b^2+2c^2=2ab+2bc+2ca\)

              \(\Leftrightarrow\left(a^2-2ab+b^2\right)+\left(b^2-2bc+c^2\right)+\left(c^2-2ca+a^2\right)=0\)

              \(\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=0\)

              \(\Leftrightarrow a-b=0\Leftrightarrow a=b\left(1\right)\)

              hay\(b-c=0\Leftrightarrow b=c\left(2\right)\)

             hay\(c-a=0\Leftrightarrow c=a\left(3\right)\)

Từ \(\left(1\right),\left(2\right)\)\(\left(3\right)\)suy ra:\(a=b=c\left(đpcm\right)\)

\(b.a^2-2a+b^2+4b+4c^2-4c+6=0\)

\(\Leftrightarrow\left(a^2-2a+1\right)+\left(b^2+4b+4\right)+\left(4c^2-4c+1\right)=0\)

\(\Leftrightarrow\left(a-1\right)^2+\left(b+2\right)^2+\left(2c-1\right)^2=0\)

\(\Leftrightarrow a-1=0\Leftrightarrow a=1\)

hay\(b+2=0\Leftrightarrow b=-2\)

hay\(2c-2=0\Leftrightarrow c=1\)

V...

^^

4 tháng 7 2019

a) \(A=5-8x-x^2\)

        \(=-\left(x^2+8x-5\right)\)

        \(=-\left(x^2+2.x.4+4^2-16-5\right)\)

        \(=-\left[\left(x+4\right)^2-21\right]\)

        \(=-\left(x+4\right)^2+21\le21\)

       Dấu "=" khi x + 4 = 0 => x = -4

       Vậy GTLN của A là 21 khi x = -4

b) \(B=5-x^2+2x-4y^2-4y\)

       \(=-\left(x^2-2x+4y^2+4y-5\right)\)

       \(=-\left[x^2-2x+1+\left(2y\right)^2+2.2y.1+1-7\right]\)

      \(=-\left[\left(x-1\right)^2+\left(2y+1\right)^2\right]+7\le7\)

    Dấu "=" khi \(\hept{\begin{cases}x-1=0\\2y+1=0\end{cases}\Rightarrow\hept{\begin{cases}x=1\\y=\frac{-1}{2}\end{cases}}}\)

   Vậy GTLN của B là 7 khi x = 1 và y = -1/2

c) Theo đề: \(a^2+b^2+c^2=ab+bc+ca\)

           \(\Leftrightarrow2a^2+2b^2+2c^2=2ab+2bc+2ca\)

         \(\Leftrightarrow2a^2+2b^2+2c^2-2ab-2bc-2ca=0\)

          \(\Leftrightarrow a^2-2ab+b^2+b^2-2bc+c^2+c^2-2ca+a^2=0\)

         \(\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=0\)

          \(\Rightarrow\hept{\begin{cases}a-b=0\\b-c=0\\c-a=0\end{cases}\Leftrightarrow\hept{\begin{cases}a=b\\b=c\\c=a\end{cases}\Leftrightarrow}a=b=c}\)(ĐPCM)

d) \(a^2-2a+b^2+4b+4c^2-4c+6=0\)

\(\Leftrightarrow\left(a^2-2a+1\right)+\left(b^2+4b+4\right)+\left(\text{4c^2}-4c+1\right)=0\)

\(\Leftrightarrow\left(a-1\right)^2+\left(b+2\right)^2+\left(2c-1\right)^2=0\)

\(\Rightarrow\hept{\begin{cases}a-1=0\\b+2=0\\2c-1=0\end{cases}\Leftrightarrow\hept{\begin{cases}a=1\\b=-2\\c=\frac{1}{2}\end{cases}}}\)

   Vậy nghiệm phương trình: a = 1; b = -2; c = 1/2

Chúc bạn học tốt ^_^

      

4 tháng 7 2019

sao ko ai giúp nhỉ ;(

23 tháng 10 2016

kết quả thôi nha

23 tháng 10 2016

umk nhanh nha bạn

5 tháng 2 2021

undefined

5 tháng 2 2021

Giups mik vs

lolang

28 tháng 10 2019

a>(8x^2y+10xy6^2-6xy):2xy=4xy+5y-3

b>(3x^2-4x).(2x-6)=6x^3-26x^2+24x

20 tháng 6 2017

Ta có : A = x2 - 4x + 1 

=> A = x2 - 2.x.2 + 4 - 3 

=> A = (x - 2)2 - 3 

Mà : (x - 2)2 \(\ge0\forall x\in R\)

Nên :   (x - 2)2 - 3 \(\ge-3\forall x\in R\)

Vậy GTNN của A là -3 khi x = 2 

20 tháng 6 2017

\(B=4x^2+4x+11=\left(2x\right)^2+2.2x.1+1+10=\left(2x+1\right)^2+10\)

Vì \(\left(2x+1\right)^2\ge0\Rightarrow B=\left(2x+1\right)^2+10\ge10\)

Dấu "=" xảy ra khi (2x+1)2=0 <=> 2x+1=0 <=> x=-1/2

Vậy gtnn của B là 10 khi x=-1/2
---

\(C=\left(x-1\right)\left(x+2\right)\left(x+3\right)\left(x+6\right)=\left(x^2+5x-6\right)\left(x^2+5x+6\right)=\left(x^2+5x\right)^2-36\ge-36\)

Dấu "=" xảy ra khi x=0 hoặc x=-5

5 tháng 11 2017

Giải như sau.

(1)+(2)⇔x2−2x+1+√x2−2x+5=y2+√y2+4⇔(x2−2x+5)+√x2−2x+5=y2+4+√y2+4⇔√y2+4=√x2−2x+5⇒x=3y(1)+(2)⇔x2−2x+1+x2−2x+5=y2+y2+4⇔(x2−2x+5)+x2−2x+5=y2+4+y2+4⇔y2+4=x2−2x+5⇒x=3y

⇔√y2+4=√x2−2x+5⇔y2+4=x2−2x+5, chỗ này do hàm số f(x)=t2+tf(x)=t2+t đồng biến ∀t≥0∀t≥0
Công việc còn lại là của bạn ! 

30 tháng 9 2018

\(\left(x+6\right)\left(2x+1\right)=0\)

<=>  \(\orbr{\begin{cases}x+6=0\\2x+1=0\end{cases}}\)

<=>  \(\orbr{\begin{cases}x=-6\\x=-\frac{1}{2}\end{cases}}\)

Vậy....

hk tốt

^^

1. Rút gọn các biểu thức sau: a. A = 1002 - 992+ 982 - 972 + ... + 22 - 12 b. B = 3(22 + 1) (24 + 1) ... (264 + 1) + 12 c. C = (a + b + c)2 + (a + b - c)2 - 2(a + b)2 2. Chứng minh rằng: a. a3 + b3 = (a + b)3 - 3ab (a + b) b. a3 + b3 + c3 - 3abc = (a + b + c) (a2 + b2 c2 - ab - bc - ca) Suy ra các kết quả: i. Nếu a3 + b3 + c3 = 3abc thì a + b + c = 0 hoặc a = b = c 3. Tìm giá trị nhỏ nhất của các biểu thức a. A = 4x2 + 4x + 11 b. B = (x - 1) (x + 2) (x...
Đọc tiếp

1. Rút gọn các biểu thức sau:

a. A = 1002 - 992+ 982 - 972 + ... + 22 - 12

b. B = 3(22 + 1) (24 + 1) ... (264 + 1) + 12

c. C = (a + b + c)2 + (a + b - c)2 - 2(a + b)2

2. Chứng minh rằng:

a. a3 + b3 = (a + b)3 - 3ab (a + b)

b. a3 + b3 + c3 - 3abc = (a + b + c) (a2 + b2 c2 - ab - bc - ca)

Suy ra các kết quả:

i. Nếu a3 + b3 + c3 = 3abc thì a + b + c = 0 hoặc a = b = c

Bài tập toán nâng cao lớp 8

3. Tìm giá trị nhỏ nhất của các biểu thức

a. A = 4x2 + 4x + 11

b. B = (x - 1) (x + 2) (x + 3) (x + 6)

c. C = x2 - 2x + y2 - 4y + 7

4. Tìm giá trị lớn nhất của các biểu thức

a. A = 5 - 8x - x2

b. B = 5 - x2 + 2x - 4y2 - 4y

5. a. Cho a2 + b2 + c2 = ab + bc + ca chứng minh rằng a = b = c

b. Tìm a, b, c biết a2 - 2a + b2 + 4b + 4c2 - 4c + 6 = 0

6. Chứng minh rằng:

a. x2 + xy + y2 + 1 > 0 với mọi x, y

b. x2 + 4y2 + z2 - 2x - 6z + 8y + 15 > 0 Với mọi x, y, z

7. Chứng minh rằng:

x2 + 5y2 + 2x - 4xy - 10y + 14 > 0 với mọi x, y.

8. Tổng ba số bằng 9, tổng bình phương của chúng bằng 53. Tính tổng các tích của hai số trong ba số ấy.

9. Chứng minh tổng các lập phương của ba số nguyên liên tiếp thì chia hết cho 9.

10. Rút gọn biểu thức:

A = (3 + 1) (32 + 1) (34 + 1) ... (364 + 1)

11. a. Chứng minh rằng nếu mỗi số trong hai số nguyên là tổng các bình phương của hai số nguyên nào đó thì tích của chúng có thể viết dưới dạng tổng hai bình phương.

b. Chứng minh rằng tổng các bình phương của k số nguyên liên tiếp (k = 3, 4, 5) không là số chính phương.

2
31 tháng 10 2017

1) a) \(A=100^2-99^2+98^2-97^2+....+2^2-1^2\)

\(=\left(100-99\right)\left(100+99\right)+\left(99-98\right)\left(99+98\right)+....\left(2-1\right)\left(2+1\right)\)

\(=100+99+98+.....+2+1\)

\(=\dfrac{100.101}{2}=5050\)

2) a) \(VP=\left(a+b\right)^3-3ab\left(a+b\right)\)

\(=a^3+b^3+3a^2b+3ab^2-3a^2b+3ab^2=a^3+b^3=VT\)

b) \(a^3+b^3+c^3-3abc=\left(a+b\right)^3-3a^2b+3ab^2+c^3-3abc\)

\(=\left[\left(a+b\right)^3+c^3\right]-3ab\left(a+b+c\right)\)

\(=\left(a+b+c\right)\left[\left(a+b\right)^2-c\left(a+b\right)+c^2\right]-3ab\left(a+b+c\right)\)

\(=\left(a+b+c\right)\left(a^2+2ab+b^2-ac-bc+c^2-3ab\right)\)

\(=\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ca\right)\)

\(=\dfrac{1}{2}\left(a+b+c\right)\left(2a^2+2b^2+2c^2-2ab-2bc-2ca\right)\)

\(=\dfrac{1}{2}\left(a+b+c\right)\left[\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\right]\)Khi \(a^3+b^3+c^3=3abc\) \(\Rightarrow\)
\(\left[{}\begin{matrix}a+b+c=0\\a=b=c\end{matrix}\right.\)

i.i \(A=\dfrac{bc}{a^2}+\dfrac{ca}{b^2}+\dfrac{ab}{c^2}=abc\left(\dfrac{1}{a^3}+\dfrac{1}{b^3}+\dfrac{1}{c^3}\right)=abc.\dfrac{3}{abc}=3\)iii. \(a^3+b^3+c^3=3abc\Rightarrow\)
\(\left[{}\begin{matrix}a+b+c=0\\a=b=c\end{matrix}\right.\)

TH1: a=b=c

\(B=\left(1+\dfrac{a}{b}\right)\left(1+\dfrac{b}{c}\right)\left(1+\dfrac{c}{a}\right)=\left(1+1\right)\left(1+1\right)\left(1+1\right)=8\)

TH2: a+b+c=0

\(B=\left(\dfrac{a+b}{b}\right)\left(\dfrac{b+c}{c}\right)\left(\dfrac{a+c}{a}\right)=\dfrac{-c}{b}.\dfrac{-a}{c}.\dfrac{-b}{a}=-1\)

6 tháng 1 2018

chép trên vn doc àgianroi