Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
c1
p+1;p+2;p+3p+1;p+2;p+3 là các số tự nhiên liên tiếp
Trong 3 số tự nhiên liên tiếp luôn tồn tại ít nhất 1 số chẵn. Mà số nguyên tố chẵn duy nhất là 2 nên để 3 số đó đều là số nguyên tố thì có 1 số bằng 2.
3 số tự nhiên liên tiếp có 1 số bằng 2 là 1;2;31;2;3 hoặc (2;3;4)(2;3;4)
Cả 2 bộ số trên đều không thỏa mãn vì 1 và 4 không là số nguyên tố.
Do đó không có số tự nhiên p nào thỏa mãn yêu cầu bài toán.
c2
a) 5 . 6 . 7 + 8 . 9
ta có :
5 . 6 . 7 chia hết cho 3
8 . 9 chia hết cho 3
=> 5 . 6 . 7 + 8 . 9 chia hết cho 3 và ( 5 . 6 . 7 + 8 . 9 ) > 3 nên là hợp số
b 5 . 7 . 9 . 11 - 2 . 3 . 7
ta có :
5 . 7 . 9 . 11 chia hết cho 7
2 . 3 . 7 chia hết cho 7
=> 5 . 7 . 9 . 11 - 2 . 3 . 7 chia hết cho 7 và ( 5 . 7 . 9 . 11 - 2 . 3 . 7 ) > 7 nên là hợp số
c3
1, 222 = 2 x 3 x 37
ước nguyên tố của 222 là: 2; 3; 37
2, tổng hiệu sau là số nguyên tố hay hợp số:
a, 25 - 1 = 31 ( là số nguyên tố)
b, 11.13.17.19.23 là hợp số vì nó chia hết cho 1, 11, 13, 17, 19, 23
c, 2.3.5.7 + 11.13. 17
= 210 + 2431
= 2641
= 19 x 139 (là hợp số)
d, 723 - 722
= 722. (7- 1)
= 722.6 (là hợp số)