Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
có 2 tờ 100 nghìn, có 4 tờ 50 nghìn, có 10 tờ 20 nghìn.
Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{a}{1}=\dfrac{b}{\dfrac{1}{2}}=\dfrac{c}{\dfrac{1}{5}}=\dfrac{a+b+c}{1+\dfrac{1}{2}+\dfrac{1}{5}}=\dfrac{68}{\dfrac{17}{10}}=40\)
Do đó: a=40; b=20; c=8
Gọi số tờ 1 nghìn đồng là a; số tờ 2 nghìn đồng là b; số tiền 3 000 đồng là c
Ta có
\(\frac{a}{1}=\frac{b}{2}=\frac{c}{3}\)
adtcdtsbn, ta có:
a/1=b/2=c/3=(a+b+c)/1+2+3=75:6=12,5
Bài 1 à bài hai cũng lmf như thế này:
Gọi phần mà số 540 chia thành là a,b,c.
Vì a,b,c tỉ lệ với 2,3,4 nên
\(\frac{a}{2}=\frac{b}{3}=\frac{c}{4}\)và\(a+b+c=540\)
Áp dụng tính chất dãy tỉ số bằng nhau, ta có:
\(\frac{a}{2}=\frac{b}{3}=\frac{c}{4}=\frac{a+b+c}{2+3+4}=\frac{540}{9}=60\)
Vi \(\frac{a}{2}=9\Rightarrow a=2\cdot9=18\)
\(\frac{b}{3}=9\Rightarrow b=9\cdot3=27\)
\(\frac{c}{4}=9\Rightarrow c=9\cdot4=36\)
Vậy số đó là: 18;27;36
bài 1 :
gọi 3 phần phải chia là : a; b; c
vì 3 phần phải chia lần lượt tỉ lệ nghịch với 2; 3; 4, nên :
2a = 3b = 4c
=> 2a/12 = 3b/12 = 4c/12
=> a/6 = b/4 = c/3
=> a + b + c/6 + 4 + 3 = a/6 = b/4 = c/3
vì phải chia số 520 thành 3 phần => a + b + c = 520
ta có :
520/13 = a/6 = b/4 = c/3
=> 40 = a/6 = b/4 = c/3
=> a = 240; b = 160; c = 120
vậy_
1. \(\frac{x}{4}=\frac{y}{7}\)và \(xy=112\)
đặt \(\frac{x}{4}=\frac{y}{7}=k\)
\(\Rightarrow x=4k;y=7k\)
ta có:\(xy=4k\cdot7k=28k^2=112\)
\(\Rightarrow k^2=112:28=4\)
\(\Rightarrow\orbr{\begin{cases}k=2\\k=-2\end{cases}}\)
TH1: \(\hept{\begin{cases}x=2\cdot4=8\\y=2\cdot7=14\end{cases}}\)
TH2: \(\hept{\begin{cases}x=-2\cdot4=-8\\y=-2\cdot7=-14\end{cases}}\)
áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{x}{2}=\frac{y}{3}=\frac{z}{4}=\frac{x^2-y^2+2z^2}{2^2-3^2+2.4^2}=\frac{108}{27}=4\)
vậy:
x/2=4 =>x=4.2=8
y/3=4 =>y=4.3=12
z/4=4 =>z=4.4=16
Gọi x;y;z là số tờ tiền loại 2000, 5000,10000
Giá trị toàn bộ 3 cọc tiền là :
\(2000.x+5000.y+10000.z\)
Giá trị 3 cọc tiền bằng nhau :
\(2000.x=5000.y=10000.z\)
\(\Rightarrow\dfrac{x}{5000.10000}=\dfrac{y}{2000.10000}=\dfrac{z}{2000.5000}=\dfrac{x+y+z}{50000000+20000000+10000000}=\dfrac{72}{80000000}=\dfrac{9}{10000000}\)
\(\Rightarrow\left\{{}\begin{matrix}x=50000000.\dfrac{9}{10000000}=45\\y=20000000.\dfrac{9}{10000000}=18\\z=10000000.\dfrac{9}{10000000}=9\end{matrix}\right.\)
Vậy loại 2000 đồng có 45 tờ
loại 5000 đồng có 18 tờ
loại 10000 đồng có 9 tờ
Đặt \(\frac{x}{2}=\frac{y}{3}=\frac{z}{4}=k\) \(\left(k\ne0\right)\)
=> x= 2 ;y= 3k ;z= 4k
Ta có:
x2 - y2 + 2z2 =108
=>(2k)2 -(3k)2 +2(4k)2 =108
=>4k2 -9k2 +2(16k2) =108
=>4k2 -9k2 +32k2 =108
=>k2(4 -9 +32) =108
=>k2.27 =108
=>k2 =108: 27
=>k2 =4
=>\(k=\pm2\)
TH1: k=2
=> x=2.2=4
y=3.2=6
z=4.2=8
TH2: k=-2
=> x=2.(-2)=-4
y=3.(-2)=-6
z=4.(-2)=-8
Vậy x=4; y=6; z=8
hoặc x=-4; y=-6; z=-8
Đặt \(\frac{x}{2}=\frac{y}{3}=\frac{z}{4}=a\left(a\ne0\right)\)
\(\Rightarrow\hept{\begin{cases}x=2a\\y=3a\\z=4a\end{cases}}\)
Ta có : \(x^2-y^2+2z^2=108\)
\(\Rightarrow\left(2a\right)^2-\left(3a\right)^2+2\left(4a\right)^2=108\)
\(\Leftrightarrow4a^2-9a^2+32a^2=108\)
\(\Leftrightarrow27a^2=108\)
\(\Leftrightarrow a^2=4\)
\(\Leftrightarrow\orbr{\begin{cases}a=-2\\a=2\end{cases}}\)
+) Với \(a=-2\Leftrightarrow\hept{\begin{cases}x=2a=-4\\y=3a=-6\\z=4a=-8\end{cases}}\)
+) Với \(a=2\Leftrightarrow\hept{\begin{cases}x=2a=4\\y=3a=6\\z=4a=8\end{cases}}\)
Vậy ...
( p/s : có bn làm oy nhưng mk đang rảnh nên làm nhá :) đừng chửi :)))
Bài 1:
Giải:
Ta có: \(\frac{x}{2}=\frac{y}{3}=\frac{z}{4}\)
\(\Rightarrow\frac{x^2}{4}=\frac{y^2}{9}=\frac{z^2}{16}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{x^2}{4}=\frac{y^2}{9}=\frac{z^2}{16}=\frac{2z^2}{32}=\frac{x^2-y^2+2z^2}{4-9+32}=\frac{108}{27}=4\)
+) \(\frac{x^2}{4}=4\Rightarrow x=\pm4\)
+) \(\frac{y^2}{9}=4\Rightarrow y=\pm6\)
+) \(\frac{z^2}{16}=4\Rightarrow z=\pm8\)
Vậy bộ số \(\left(x,y,z\right)\) là \(\left(4,6,8\right);\left(-4,-6,-8\right)\)