Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(=10\frac{1}{4}\cdot\frac{-5}{3}-8\frac{1}{4}\cdot\frac{-5}{3}-5=\left(10\frac{1}{4}-8\frac{1}{4}\right)\cdot\frac{-5}{3}-5\)
\(=\left(\frac{41}{4}-\frac{33}{4}\right)\cdot\frac{-5}{3}-5=2\cdot\frac{-5}{3}-5\)\(=\frac{-10}{3}-\frac{15}{3}=\frac{-25}{3}\)
b)\(=\frac{5}{7}+1+\frac{2}{7}+\frac{2^{10}\cdot\left(2^3\right)^3}{\left(2^2\right)^9}\)
\(=\frac{5}{7}+\frac{2}{7}+1+\frac{2^{10}\cdot2^9}{2^{27}}\)
\(=1+1+\frac{1}{2^8}=2+\frac{1}{256}=\frac{512}{256}+\frac{1}{256}=\frac{513}{256}\)
Bạn xem lại đề câu a) cho rõ lại
Câu b) Tại x=2013 thì B=x2013-(x+1)x2012+(x+1)x2011-(x+1)x2010+...-(x+1)x2+(x+1)x-1
= x2013-x2013-x2012+x2012+x2011-x2011-x2010+..-x3 - x2+x2+x-1
= x-1 = 2012
Ta có : \(P=5\frac{1}{3}-3\left|2x+7\right|\)
Vì : \(3\left|2x+7\right|\ge0\forall x\in R\)
Nên : \(-3\left|2x+7\right|\le0\forall x\in R\)
Suy ra : \(P=5\frac{1}{3}-3\left|2x+7\right|\le5\frac{1}{3}\forall x\in R\)
Vậy GTLN của biểu thức là : \(5\frac{1}{3}\) tại \(x=-\frac{7}{2}\)
a) Ta có: \(\left|2x-\frac{1}{3}\right|\ge0\)
\(\Rightarrow A=\left|2x-\frac{1}{3}\right|+107\ge107\)
\(\Rightarrow\)Dấu " =" xảy ra khi \(\left|2x-\frac{1}{3}\right|=0\)
\(\Rightarrow2x-\frac{1}{3}=0\)
\(\Rightarrow2x=\frac{1}{3}\)
\(\Rightarrow x=\frac{1}{6}\)
Vậy A đạt GTNN = 107 khi x = \(\frac{1}{6}\)
b) Ta có: \(\left|x+\frac{3}{5}\right|\ge0\)
\(\Rightarrow B=\left|x+\frac{3}{5}\right|-\frac{1}{2}\ge\frac{-1}{2}\)
=> Dấu" = " xảy ra khi \(\left|x+\frac{3}{5}\right|=0\)
\(\Rightarrow x+\frac{3}{5}=0\)
\(\Rightarrow x=\frac{-3}{5}\)
Vậy B đạt GTNN = \(\frac{-1}{2}\) Khi x = \(\frac{-3}{5}\)