Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\frac{1}{3\cdot5}+\frac{1}{5\cdot7}+\frac{1}{7\cdot9}+...+\frac{1}{97\cdot99}-\frac{5}{4}\cdot\frac{13}{99}+\frac{5}{99}\cdot\frac{1}{4}\)
\(A=\frac{1}{2}\left(\frac{2}{3\cdot5}+\frac{2}{5\cdot7}+...+\frac{2}{97\cdot99}\right)-\frac{13}{4}\cdot\frac{5}{99}+\frac{5}{99}\cdot\frac{1}{4}\)
\(A=\frac{1}{2}\left(\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{97}-\frac{1}{99}\right)-\frac{5}{99}\cdot\left(\frac{13}{4}-\frac{1}{4}\right)\)
\(A=\frac{1}{2}\left(\frac{1}{3}-\frac{1}{99}\right)-\frac{5}{99}\cdot3\)
\(A=\frac{1}{2}\cdot\frac{32}{99}-\frac{5}{33}\)
\(A=\frac{16}{99}-\frac{5}{33}=\frac{1}{99}\)
\(\frac{A}{B}=\frac{7^{2013}+1}{7^{2014}+1}.\frac{7^{2015}+1}{7^{2014}+1}=\frac{7^{4028}+7^{2013}+7^{2015}+1}{7^{4028}+2.7^{2014}+1}=\)
\(=\frac{7^{4028}+7^{2013}\left(1+7^2\right)+1}{7^{4028}+2.7.7^{2013}+1}=\frac{7^{4028}+50.7^{2013}+1}{7^{4028}+14.7^{2013}+1}>1\)
\(\Rightarrow A>B\)
Ta có :
\(B=\frac{2016}{1}+\frac{2015}{2}+\frac{2014}{3}+...+\frac{1}{2016}\)
\(B=\left(\frac{2015}{2}+1\right)+\left(\frac{2014}{3}+1\right)+...+\left(\frac{1}{2016}+1\right)+1\)
\(B=\frac{2017}{2}+\frac{2017}{3}+...+\frac{2017}{2016}+\frac{2017}{2017}\)
\(B=2017.\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2016}+\frac{1}{2017}\right)\)
\(\Rightarrow\frac{B}{A}=\frac{2017.\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2016}+\frac{1}{2017}\right)}{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2017}}=2017\)
Vậy \(\frac{B}{A}\)là số nguyên
\(A=\frac{2015^{2013}+1}{2015^{2014}+1}=\frac{\left(2015^{2013}+1\right)\left(2015^{2014}+1\right)}{\left(2015^{2014}+1\right)\left(2015^{2016}+1\right)}=\frac{2015^{4027}+2015^{2013}+2015^{2014}+1}{\left(2015^{2014}+1\right)\left(2015^{2016}+1\right)}\)
\(B=\frac{2015^{2015}+1}{2015^{2016}+1}=\frac{\left(2015^{2015}+1\right)\left(2015^{2014}+1\right)}{\left(2015^{2016}+1\right)\left(2015^{2014}+1\right)}=\frac{2015^{4029}+2015^{2015}+2015^{2014}+1}{\left(2015^{2016}+1\right)\left(2015^{2014}+1\right)}\)
Ta thấy hiển nhiên thử của B > tử của A nên B > A
Vậy...