K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 7 2017

1, xy(x+y)+yz(y+z)+xz(x+z)+2xyz

= x2y+xy2+y2z+yz2+x2z+xz2+2xyz

=(x2y+x2z+xz2+xyz) + ( xy2+y2z+yz2+xyz)

=x(xy+xz+z2+yz)+y(xy+yz+z2+xz)

=(xy+xz+yz+z2).(x+y)

=(x(y+z)+z(y+z)).(x+y)

=((y+z).(x+z)).(x+y)= (x+y)(x+z)(y+z)

2. 3(x-3)(x-7)+(x-4)2+48

=3(x2+4x-21)+x2-8x+16+48

=4x2-4x+1 = (2x-1)2

Thay x=0,5 vào bt trên, ta có : (2.0,5 -1)2=0

3, x2-6x+10

= x2-2.3.x+9+1

=(x-3)2+1 \(\ge\)1 >0 ( do (x-3)>=0 với mọi x)

=> x26x+10 >0 với mọi x

4x-x2-5

=-(x2-4x+5)

=- (x2-2.2x+4+1)

= - ((x-2)2+1) = -(x-2)2-1\(\le\)-1 < 0 ( do (x-2)2\(\ge\)0 với mọi x => - (x-2)2\(\le\)0 với mọi x)

vậy, 4x-x2-5<0 với mọi x

5 tháng 7 2017

Ta có : x2 - 6x + 10 

= x2 - 6x + 9 + 1 

= (x - 3)2 + 1

Mà (x - 3)2 \(\ge0\forall x\)

Nên : (x - 3)2 + 1 \(\ge1\forall x\)

=> (x - 3)2 + 1 \(>0\)(đpcm)

29 tháng 6 2019

cmr bieu thuc sau luon luon co gia tri duong voi moi gia tri cua bien: 3x^2 -5x+3

15 tháng 8 2018

Đặt \(A=4x\left(x+y\right)\left(x+y+z\right)\left(x+z\right)+y^2z^2\)

\(=4\left(x+y\right)\left(x+z\right)x\left(x+y+z\right)+y^2z^2=4\left(x^2+xz+xy+yz\right)\left(x^2+xy+xz\right)+y^2z^2\)

Đặt x2+xy+xz=t, ta có:

\(A=4\left(t+yz\right)t+y^2z^2=4t^2+4tyz+y^2z^2=\left(2t+yz\right)^2=\left(2x^2+2xy+2xz+yz\right)^2\ge0\)

15 tháng 8 2018

ta có : \(4x\left(x+y\right)\left(x+y+z\right)\left(x+y\right)y^2x^2=4x\left(x+y+z\right)\left(x+y\right)^2y^2x^2\)

không thể khẳng định đc \(\Rightarrow\) bn xem lại đề .

29 tháng 10 2016

\(B=x^4-2x^3+2x^2-4x+5\)

\(=\left(x^4-2x^3+x^2\right)+\left(x^2-4x+4\right)+1\)

\(=\left(x^2-x\right)^2+\left(x-2\right)^2+1\)

Vì: \(\begin{cases}\left(x^2-x\right)^2\ge0\\\left(x-2\right)^2\ge0\end{cases}\)\(\Rightarrow\left(x^2-x\right)^2+\left(x-2\right)^2\ge0\)

\(\Rightarrow\left(x^2-x\right)^2+\left(x-2\right)^2+1>0\)

Kết luận...............................................

31 tháng 10 2016

Thanks ban nhieu lam ban gioi that

19 tháng 8 2020

\(P=x^2-6x+10\\ P=x^2-6x+9+1\\ P=\left(x-3\right)^2+1\)

\(\left(x-3\right)^2\ge0\forall x\)

\(\Rightarrow P=\left(x-3\right)^2+1\ge0+1>0\forall x\)

Vậy \(P>0\forall x\)

24 tháng 7 2018

  -x^2 -y^2 + 2x +2y -3

= (-x^2 + 2x -1)-(y^2 -2y+1)-1

= -(x-1)^2 -(y-1)^2 -1

Vì -(x-1)^2 -(y-1)^2 -1 < 0 với mọi x,y nên -x^2 -y^2 + 2x+ 2y+ 3 luôn nhận giá trị âm với mọi biến.

Chúc bạn học tốt.

24 tháng 7 2018

Cam onn bạn nhiều nha