K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 7 2017

1, xy(x+y)+yz(y+z)+xz(x+z)+2xyz

= x2y+xy2+y2z+yz2+x2z+xz2+2xyz

=(x2y+x2z+xz2+xyz) + ( xy2+y2z+yz2+xyz)

=x(xy+xz+z2+yz)+y(xy+yz+z2+xz)

=(xy+xz+yz+z2).(x+y)

=(x(y+z)+z(y+z)).(x+y)

=((y+z).(x+z)).(x+y)= (x+y)(x+z)(y+z)

2. 3(x-3)(x-7)+(x-4)2+48

=3(x2+4x-21)+x2-8x+16+48

=4x2-4x+1 = (2x-1)2

Thay x=0,5 vào bt trên, ta có : (2.0,5 -1)2=0

3, x2-6x+10

= x2-2.3.x+9+1

=(x-3)2+1 \(\ge\)1 >0 ( do (x-3)>=0 với mọi x)

=> x26x+10 >0 với mọi x

4x-x2-5

=-(x2-4x+5)

=- (x2-2.2x+4+1)

= - ((x-2)2+1) = -(x-2)2-1\(\le\)-1 < 0 ( do (x-2)2\(\ge\)0 với mọi x => - (x-2)2\(\le\)0 với mọi x)

vậy, 4x-x2-5<0 với mọi x

5 tháng 7 2017

Ta có : x2 - 6x + 10 

= x2 - 6x + 9 + 1 

= (x - 3)2 + 1

Mà (x - 3)2 \(\ge0\forall x\)

Nên : (x - 3)2 + 1 \(\ge1\forall x\)

=> (x - 3)2 + 1 \(>0\)(đpcm)

11 tháng 4 2016
giup mik vs. Cau nao cux dk
3 tháng 10 2017

Bài 1 câu g bạn kia làm sai mình sửa lại nhá

\(3a^2-6ab+3b^2-12c^2\)

\(=3\left(a^2-2ab+b^2\right)-12c^2\)

\(=3\left(a-b\right)^2-12c^2\)

\(=3\left[\left(a-b\right)^2-4c^2\right]\)

\(=3\left(a-b-2c\right)\left(a-b+2c\right)\)

3 tháng 10 2017

Để mình làm tiếp cho :))

Bài 2 :

Câu a : \(37,5.8,5-7,5.3,4-6,6.7,5+1,5.37,5\)

\(=\left(37,5.8,5+1,5.37,5\right)-\left(7,5.3,4+6,6.7,5\right)\)

\(=37,5\left(8,5+1,5\right)-7,5\left(3,4+6,6\right)\)

\(=37,5.10-7,5.10\)

\(=10.30=300\)

Câu b : \(35^2+40^2-25^2+80.35\)

\(=\left(35^2+80.35+40^2\right)-25^2\)

\(=\left(30+45\right)^2-25^2\)

\(=75^2-25^2\)

\(=\left(75+25\right)\left(75-25\right)\)

\(=100.50=5000\)

Bài 3 :

Câu a : \(x^3-\dfrac{1}{9}x=0\)

\(\Leftrightarrow x\left(x^2-\dfrac{1}{9}\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x^2-\dfrac{1}{9}=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=0\\x=\pm\dfrac{1}{3}\end{matrix}\right.\)

Câu b : \(2x-2y-x^2+2xy-y^2=0\)

\(\Leftrightarrow2\left(x-y\right)-\left(x-y\right)^2=0\)

\(\Leftrightarrow\left(x-y\right)\left(2-x+y\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-y=0\\2-x+y=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=y\\x+y=2\Rightarrow x=2-y\end{matrix}\right.\)

Câu c :

\(x\left(x-3\right)+x-3=0\)

\(\Leftrightarrow\left(x-3\right)\left(x+1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-3=0\\x+1=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=3\\x=-1\end{matrix}\right.\)

\(x^2\left(x-3\right)+27-9x=0\)

\(\Leftrightarrow x^2\left(x-3\right)-9\left(x-3\right)=0\)

\(\Leftrightarrow\left(x-3\right)\left(x^2-9\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-3=0\\x^2-9=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=3\\x=\pm3\end{matrix}\right.\)

Bài 4 :

Câu a :

\(x^2-4x+3\)

\(=x^2-x-3x+3\)

\(=\left(x^2-x\right)-\left(3x-3\right)\)

\(=x\left(x-1\right)-3\left(x-1\right)\)

\(=\left(x-1\right)\left(x-3\right)\)

Câu b :

\(x^2+x-6\)

\(=x^2-2x+3x-6\)

\(=x\left(x-2\right)+3\left(x-2\right)\)

\(=\left(x-2\right)\left(x+3\right)\)

Câu c :

\(x^2-5x+6\)

\(=x^2-2x-3x+6\)

\(=\left(x^2-2x\right)-\left(3x-6\right)\)

\(=x\left(x-2\right)-3\left(x-2\right)\)

\(=\left(x-2\right)\left(x-3\right)\)

Câu d :

\(x^4+4\)

\(=x^4+4x^2+4-4x^2\)

\(=\left(x^2+2\right)^2-\left(2x\right)^2\)

\(=\left(x^2+2-2x\right)\left(x^2+2+2x\right)\)

15 tháng 8 2018

Đặt \(A=4x\left(x+y\right)\left(x+y+z\right)\left(x+z\right)+y^2z^2\)

\(=4\left(x+y\right)\left(x+z\right)x\left(x+y+z\right)+y^2z^2=4\left(x^2+xz+xy+yz\right)\left(x^2+xy+xz\right)+y^2z^2\)

Đặt x2+xy+xz=t, ta có:

\(A=4\left(t+yz\right)t+y^2z^2=4t^2+4tyz+y^2z^2=\left(2t+yz\right)^2=\left(2x^2+2xy+2xz+yz\right)^2\ge0\)

15 tháng 8 2018

ta có : \(4x\left(x+y\right)\left(x+y+z\right)\left(x+y\right)y^2x^2=4x\left(x+y+z\right)\left(x+y\right)^2y^2x^2\)

không thể khẳng định đc \(\Rightarrow\) bn xem lại đề .

10 tháng 1 2016

\(\left(x+y+z\right)\left(xy+yz+xz\right)-xyz=xy\left(x+y+z\right)-xyz+\left(yz+xz\right)\left(x+y+z\right)\)

\(=xy\left(x+y+z-z\right)+z\left(x+y\right)\left(x+y+z\right)\)

\(=xy\left(x+y\right)+z\left(x+y\right)\left(x+y+z\right)\)

\(=\left(x+y\right)\left[xy+z\left(x+y+z\right)\right]\)

\(=\left(x+y\right)\left(xy+xz+yz+z^2\right)\)

\(=\left(x+y\right)\left[x\left(y+z\right)+z\left(y+z\right)\right]\)

\(=\left(x+y\right)\left(y+z\right)\left(x+z\right)\)

19 tháng 8 2020

\(P=x^2-6x+10\\ P=x^2-6x+9+1\\ P=\left(x-3\right)^2+1\)

\(\left(x-3\right)^2\ge0\forall x\)

\(\Rightarrow P=\left(x-3\right)^2+1\ge0+1>0\forall x\)

Vậy \(P>0\forall x\)