K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 7 2018

\(B=x^4-6x^3+11x^2-6x+1\)

\(=\left(x^4-3x^3+x^2\right)-\left(3x^3-9x^2+3x\right)+x^2-3x+1\)

\(=x^2\left(x^2-3x+1\right)-3x\left(x^2-3x+1\right)+\left(x^2-3x+1\right)\)

\(=\left(x^2-3x+1\right)^2\)

14 tháng 7 2018

\(B=x^4-6x^3+11x^2-6x+1\)

\(=x^4-x^3+x^2-5x^3+5x^2-5x+x^2-x+1\)

\(=x^2\left(x^2-x+1\right)-5x\left(x^2-x+1\right)+\left(x^2-x+1\right)\)

\(=\left(x^2-x+1\right)\left(x^2-5x+1\right)\)

20 tháng 8 2020

đề câu 2 thiếu kìa

14 tháng 8 2015

\(\left(x^2+4x+7\right)\left(x^2+5x+8\right)\)

14 tháng 8 2015

Dạng đầy đủ: \(x^4+ax^3+bx^2+cx+d\)

Nhân 4 vô: \(=4x^4+4ax^3+4bx^2+4cx+4d=\left(2x^2+ax\right)^2+\left[\left(4b-a^2\right)x^2+4cx+4d\right]\)

\(=\left[\left(2x^2+ax\right)^2+2.m.\left(2x^2+ax\right)+m^2\right]+\left[\left(4b-a^2-4m\right)x^2+\left(4c-2ma\right)x+4d-m^2\right]=0\)

(m là 1 hằng số đang đi tìm)

\(=\left(2x^2+ax+m\right)^2+\left[\left(4b-a^2-4m\right)x^2+2\left(4c-m\right)x+4d-m^2\right]\)

Lại phân tích \(\left(4b-a^2-4m\right)x^2+2\left(4c-m\right)x+4d-m^2=...\left(x+...\right)^2\)

Cần: \(\Delta'=\left(4c-m\right)^2-\left(4b-a^2-4m\right)\left(4d-m^2\right)=0\)

Đây là pt bậc 3 ẩn m, tìm m đẹp và \(4b-a^2-4m<\)\(0\) là đa thức đã cho phân tích được thành hiệu 2 bình phương -> hằng đẳng thức số 3.

1. Tổng các hệ số của đa thức là: 12004.22005=22005

2.Cần chứng minh x4+x3+x2+x+1=0 vô nghiệm.

Nhận thấy x = 1 không là nghiệm của phương trình .

Nhân cả hai vế của pt cho (x−1)≠0 được : 

(x−1)(x4+x3+x2+x+1)=0⇔x5−1=0⇔x=1(vô lí)

Vậy pt trên vô nghiệm.

25 tháng 2 2018

1. Tổng các hệ số của đa thức là: 

12014 . 22015 = 22015

2 . Cần chứng minh. 

\(x4 + x3 + x2 + x + 1 = 0\)

Vô nghiệm. 

Ta nhận thấy \(x + 1 \) không là nghiệm của phương trình. 

Nhân cả hai vế của phương trình cho:

\(( x - 1 ) \) \(\ne\) \(0\) được :

\(( x-1). (x4+x3+x2+x+1)=0\)

\(\Leftrightarrow\)\(5x-1=0\) \(\Leftrightarrow\) \(x = 1\)

Vô lí. 

Vậy phương trình trên vô nghiệm.