\(x\le y\) và \(a< 0\) thì:

A.

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 5 2018

1/ Nếu xyx≤ya<0a<0 thì:

A. axayax≤ay

B. axayaxay

C. ax<ayax<ay

D. ax>ayax>ay

CChọn đáp án B

2/Tập nghiệm của phương trình |2x|=4|−2x|=4 là:

A. {2}{2}

B. {2}{−2}

C. {2;2}{2;2}

D. {1;2}{1;2}

Chọn đáp án C

3/Một lăng trụ đứng có đáy là tam giác thì lăng trụ đó có bao nhiêu mặt:

A. 33

B. 44

C. 55

D. 66

Chọn đáp án C

4/Cho tam giác ABC có AD là phân giác của BÂC (DBC)(D∈BC), AB=3 cm, AC=6 cm, BD=4 cm.Khi đó độ dài cạnh DC bằng:

A. 2cm

B. 4cm

C. 6cm

D. 8cm

Chọn đáp án B

5/Cho ΔABCΔABCMN//BCMN//BC (MAB,NAC)(M∈AB,N∈AC). Câu nào sau đây đúng:

A. MAAB=NCACMAAB=NCAC

B. MAMB=MNBCMAMB=MNBC

C. MAMB=NANCMAMB=NANC

D. NANC=MNBC

Chọn đáp án C

17 tháng 5 2018

BCCBC

7 tháng 10 2016

Ta có:

\(X-A\)\(=\)\(by+cz-cy-bz=\left(b-c\right)y+\left(c-b\right)z=\left(b-c\right)\left(y-z\right)\)

\(X-B\)\(=\)\(ax+by-bx-ay=\left(a-b\right)x+\left(b-a\right)y=\left(a-b\right)\left(x-y\right)\)

\(X-C\)\(=\)\(ax+cz-cx-az=\left(a-c\right)x+\left(c-a\right)z=\left(a-c\right)\left(x-z\right)\)

\(Y-A\)\(=\)\(cx+ay-ax-cy=\left(c-a\right)x+\left(a-c\right)y=\left(c-a\right)\left(x-y\right)\)

\(Y-B\)\(=\)\(cx+bz-bx-cz=\left(c-b\right)x+\left(b-c\right)z=\left(c-a\right)\left(x-z\right)\)

\(Y-C\)\(=\)\(zy+bz-by-az=\left(a-b\right)y+\left(b-a\right)z=\left(a-b\right)\left(y-z\right)\)

\(Z-A\)\(=\)\(bx+az-ax-bz=\left(b-a\right)x+\left(a-b\right)z=\left(b-a\right)\left(x-z\right)\)

\(Z-B\)\(=\)\(cy+az-ay-cz=\left(c-a\right)y+\left(a-c\right)z=\left(c-a\right)\left(y-z\right)\)

\(Z-C\)\(=\)\(bx+cy-cx-by=\left(b-c\right)x+\left(c-b\right)y=\left(b-c\right)\left(x-y\right)\)

Từ đó có:

\(\left(X-A\right)\left(X-B\right)\left(X-C\right)=\left(b-c\right)\left(a-b\right)\left(a-c\right)\left(y-z\right)\left(x-y\right)\left(x-z\right)\)

\(\left(Y-A\right)\left(Y-B\right)\left(Y-C\right)=\left(c-a\right)\left(c-b\right)\left(a-b\right)\left(x-y\right)\left(x-z\right)\left(y-z\right)\)

\(\left(Z-A\right)\left(Z-B\right)\left(Z-C\right)=\left(b-a\right)\left(c-a\right)\left(b-c\right)\left(x-z\right)\left(y-z\right)\left(x-z\right)\)

Ta thấy , vế phải của ba đẳng thức trên là tích của sáu thừa số . Các thừa số đều có mặt trong các tích nếu ta áp dụng quy tắc đổi dấu

5 tháng 10 2016

có cần giải ra không

27 tháng 9 2016

Ta có:

\(X-A=by+cz-cy-bz=\left(b-c\right)y+\left(c-b\right)z\)\(=\)\(\left(b-c\right)\left(y-z\right)\)

\(X-B=ax+by-bx-ay=\left(a-b\right)x+\left(b-a\right)y\)\(=\)\(\left(a-b\right)\left(x-y\right)\)

\(X-C=ax+cz-cx-az=\left(a-c\right)x+\left(c-a\right)z\)\(=\)\(\left(a-c\right)\left(x-z\right)\)

\(Y-A=cx+ay-ax-cy=\left(c-a\right)x+\left(a-c\right)y\)\(=\)\(\left(c-a\right)\left(x-y\right)\)

\(Y-B=cx+bz-bx-cz=\left(c-b\right)x+\left(b-c\right)z\)\(=\)\(\left(c-a\right)\left(x-z\right)\)

\(Y-C=zy+bz-by-az=\left(a-b\right)y+\left(b-a\right)z\)\(=\)\(\left(a-b\right)\left(y-z\right)\)

\(Z-A=bx-az-ax-bz=\left(b-a\right)x+\left(a-b\right)z\)\(=\)\(\left(b-a\right)\left(x-z\right)\)

\(Z-B=cy+az-ay-cz=\left(c-a\right)y+\left(a-c\right)z\)\(=\)\(\left(c-a\right)\left(y-z\right)\)

\(Z-C=bx+cy-cx-by=\left(b-c\right)x+\left(c-b\right)y\)\(=\)\(\left(b-c\right)\left(x-y\right)\)

Từ đó có:

\(\left(X-A\right)\left(X-B\right)\left(X-C\right)=\left(b-c\right)\left(a-b\right)\left(a-c\right)\left(y-z\right)\left(x-y\right)\left(x-z\right)\)

\(\left(Y-A\right)\left(Y-B\right)\left(Y-C\right)=\left(c-a\right)\left(c-b\right)\left(a-b\right)\left(x-y\right)\left(x-z\right)\left(y-z\right)\)

\(\left(Z-A\right)\left(Z-B\right)\left(Z-C\right)=\left(b-a\right)\left(c-a\right)\left(b-c\right)\left(x-z\right)\left(y-z\right)\left(x-z\right)\)

Ta thấy , vế phải của ba đẳng thức trên là tích của 6 thừa số. Các thừa số đều có mặt trong các tích nếu ta áp dụng quy tắc đổi dấu

14 tháng 7 2017

tui làm đúng ko nếu đúng thì k nha

24 tháng 7 2019

1/ \(\left(x+3\right)^2-\left(2x-5\right)\left(x+3\right).\)

\(=x^2+6x+9-\left(2x^2+6x-5x-15\right)\)

\(=x^2+6x+9-2x^2-6x+5x+15\)

\(=-x^2+5x+24\)

\(=-\left(x^2-5x-24\right)\)

\(=-\left(x^2-8x+3x-24\right)\)

\(=-\left[x\left(x-8\right)+3\left(x-8\right)\right]\)

\(=-\left(x-8\right)\left(x+3\right)\)

2/ \(x^2-xy+x-y\)

\(=\left(x^2+x\right)-\left(xy+y\right)\)

\(=x\left(x+1\right)-y\left(x+1\right)\)

\(=\left(x-y\right)\left(x+1\right)\)

3/ \(x^3+6x^2+9x\)

\(=x\left(x^2+6x+9\right)\)

\(=x\left(x+3\right)^2\)

24 tháng 7 2019

1,Bạn tự lm

\(2,x^2-xy+x-y=x\left(x-y\right)+\left(x-y\right)=\left(x-1\right)\left(x+1\right)\)

\(3,x^3+6x^2+9x=x\left(x^2+6x+9\right)=x\left(x+3\right)^2\)

\(4,x^2y+xy+x+1=xy\left(x+1\right)+\left(x+1\right)=\left(x+1\right)\left(xy+1\right)\)

\(5,ax+by+ay+bx=\left(ax+ay\right)+\left(by+bx\right)=a\left(x+y\right)+b\left(y+x\right)=\left(x+y\right)\left(a+b\right)\)

\(6,x^2-\left(a+b\right)x+ab=x^2-ax-bx+ab=\left(x^2-bx\right)-\left(ax-ab\right)=x\left(x-b\right)-a\left(x-b\right)=\left(x-b\right)\left(x-a\right)\)

11 tháng 9 2018

1 ) Ta có :

\(ax+2x+ay+2y+4\)

\(=x\left(a+2\right)+y\left(a+2\right)+4\)

\(=\left(x+y\right)\left(a+2\right)+4\)

\(=\left(a-2\right)\left(a+2\right)+4\) ( do \(x+y=a-2\) )

\(=a^2-4+4\)

\(=a^2\left(đpcm\right)\)

2 ) \(\left(ax+b\right)\left(x^2-x-1\right)=ax^3+cx^2-1\)

\(\Leftrightarrow ax^3+bx^2-ax^2-bx-ax-b=ax^3+cx^2-1\)

\(\Leftrightarrow ax^3+x^2\left(b-a\right)-\left(b+a\right)x-b=ax^3+x^2c-0.x-1\)

\(\Leftrightarrow\left\{{}\begin{matrix}b-a=c\\b+a=0\\b=1\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}1-a=c\\1+a=0\\b=1\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}1-a=c\\a=-1\\b=1\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}c=2\\a=-1\\b=1\end{matrix}\right.\)

Vậy \(a=-1;b=1;c=2\)

11 tháng 9 2018

Ta có:

\(ax+2x+ay+2y+4\)

\(=\left(ax+ay\right)+\left(2x+2y\right)+4\)

\(=a\left(x+y\right)+2\left(x+y\right)+4\)

\(=\left(x+y\right)\left(a+2\right)+4\)

Thay \(x+y=a-2\), ta được

\(=\left(a-2\right)\left(a+2\right)+4\)

\(=a^2-4+4\)

\(=a^2\)

2 tháng 11 2017

ai trả lời nhiều tớ sẽ dùng 4 nick k cho nha cảm ơn