K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 5 2017

1)

a)

\(\dfrac{-21}{28}=\dfrac{\left(-21\right):7}{28:7}=\dfrac{-3}{4}\\ \dfrac{-39}{52}=\dfrac{\left(-39\right):13}{52:13}=\dfrac{-3}{4}\)

\(\dfrac{-3}{4}=\dfrac{-3}{4}\) nên \(\dfrac{-21}{28}=\dfrac{-39}{52}\)

b)

\(\dfrac{-1717}{2323}=\dfrac{\left(-17\right)\cdot101}{23\cdot101}=\dfrac{-17}{23}\\ \dfrac{-171717}{232323}=\dfrac{\left(-17\right)\cdot10101}{23\cdot10101}=\dfrac{-17}{23}\)

\(\dfrac{-17}{23}=\dfrac{-17}{23}\) nên \(\dfrac{-1717}{2323}=\dfrac{-171717}{232323}\)

8 tháng 5 2017

2)

Theo tính chất cơ bản của phân số ta có: \(\dfrac{a}{b}=\dfrac{a\cdot m}{b\cdot m}\)\(m\ne n\)

nên không thể.

Trường hợp duy nhất là khi \(a=0\)

Khi đó: \(\dfrac{a}{b}=\dfrac{0}{b}=\dfrac{0\cdot m}{b\cdot n}=\dfrac{0}{b\cdot n}=0\)

3)

Gọi ƯCLN\(\left(12n+1,30n+2\right)\)\(d\)

Ta có:

\(12n+1⋮d\\ \Rightarrow5\cdot\left(12n+1\right)⋮d\left(1\right)\\ \Leftrightarrow60n+5⋮d\\ 30n+2⋮d\\ \Rightarrow2\cdot\left(30n+2\right)⋮d\\ \Leftrightarrow60n+4⋮d\left(2\right)\)

Từ (1) và (2) ta có:

\(\left(60n+5\right)-\left(60n+4\right)⋮d\\ \Leftrightarrow1⋮d\\ \Rightarrow d=1\)

Vậy ƯCLN\(\left(12n+1,30n+2\right)=1\)

Mà hai số có ƯCLN = 1 thì hai số đó nguyên tố cùng nhau và không có ước chung nào khác

\(\Rightarrow\dfrac{12n+1}{30n+2}\)tối giản

2) Theo đề, ta có: \(\dfrac{23+n}{40+n}=\dfrac{3}{4}\)

\(\Leftrightarrow4\left(n+23\right)=3\left(n+40\right)\)

\(\Leftrightarrow4n+92-3n-120=0\)

\(\Leftrightarrow n=28\)

Vậy: n=28

22 tháng 3 2021

gọi UCLN của (30n+1,15n+2) là d                     30n+1 chia hết cho d

suy ra:30n+1 chia hết cho d                                     15n+2 chia hết cho d

suy ra:30n+4 chia hết cho d                    (30n+4)-(30n+1) chia hết cho d 

3 chia hết cho d                             vì 30n+1,15n+2 ko chia hết cho d

nên ucln =1                                     vậy ps 30n+1/15n+2 là ps tối giản

1: B là số nguyên

=>n-3 thuộc {1;-1;5;-5}

=>n thuộc {4;2;8;-2}

3:

a: -72/90=-4/5
b: 25*11/22*35

\(=\dfrac{25}{35}\cdot\dfrac{11}{22}=\dfrac{5}{7}\cdot\dfrac{1}{2}=\dfrac{5}{14}\)

c: \(\dfrac{6\cdot9-2\cdot17}{63\cdot3-119}=\dfrac{54-34}{189-119}=\dfrac{20}{70}=\dfrac{2}{7}\)

a: Gọi phân số cần tìm có dạng là \(\dfrac{a}{b}\left(b\ne0\right)\)

Theo đề, ta có: \(\dfrac{1}{3}< \dfrac{a}{b}< \dfrac{1}{2}\)

=>\(0,\left(3\right)< \dfrac{a}{b}< 0,5\)

=>\(\dfrac{a}{b}=0,4;\dfrac{a}{b}=0,42\)

=>\(\dfrac{a}{b}=\dfrac{2}{5};\dfrac{a}{b}=\dfrac{21}{25}\)

Vậy: Hai phân số cần tìm là \(\dfrac{2}{5};\dfrac{21}{25}\)

b: a/b<1

=>a<b

=>\(a\cdot c< b\cdot c\)

=>\(a\cdot c+ab< b\cdot c+ab\)

=>\(a\left(c+b\right)< b\left(a+c\right)\)

=>\(\dfrac{a}{b}< \dfrac{a+c}{b+c}\)

a) Gọi phân số cần tìm có dạng là \(\dfrac{a}{12}\)

Theo đề, ta có: \(\dfrac{-2}{3}< \dfrac{a}{12}< \dfrac{-1}{4}\)

\(\Leftrightarrow\dfrac{-8}{12}< \dfrac{a}{12}< \dfrac{-3}{12}\)

\(\Leftrightarrow-8< a< -3\)

\(\Leftrightarrow a\in\left\{-7;-6;-5;-4\right\}\)

Vậy: Các phân số cần tìm là \(\dfrac{-7}{12};\dfrac{-6}{12};\dfrac{-5}{12};\dfrac{-4}{12}\)

b) Gọi phân số cần tìm có dạng là \(\dfrac{15}{a}\left(a\ne0\right)\)

Theo đề, ta có: \(\dfrac{3}{7}< \dfrac{15}{a}< \dfrac{5}{8}\)

\(\Leftrightarrow\dfrac{15}{35}< \dfrac{15}{a}< \dfrac{15}{24}\)

Vậy: Các phân số cần tìm là \(\dfrac{15}{34};\dfrac{15}{33};...;\dfrac{15}{25}\)

Bài 2: 

a) Ta có: \(A=\dfrac{4}{n-1}+\dfrac{6}{n-1}-\dfrac{3}{n-1}\)

\(=\dfrac{4+6-3}{n-1}\)

\(=\dfrac{7}{n-1}\)

Để A là số tự nhiên thì \(7⋮n-1\)

\(\Leftrightarrow n-1\inƯ\left(7\right)\)

\(\Leftrightarrow n-1\in\left\{1;7\right\}\)

hay \(n\in\left\{2;8\right\}\)

Vậy: \(n\in\left\{2;8\right\}\)

27 tháng 3 2021

ta có B=2n+9/n+2-3n+5n+1/n+2=4n+10/n+2                                                   Để B là STN thì 4n+10⋮n+2                          4n+8+2⋮n+2                                  4n+8⋮n+2                                                      ⇒2⋮n+2                                     n+2∈Ư(2)                                                        Ư(2)={1;2}                                  Vậy n=0                                                                                  

13 tháng 4 2018

a. Ta có:

Giải sách bài tập Toán 6 | Giải bài tập Sách bài tập Toán 6

b. Theo kết quả câu a,ta có:

Giải sách bài tập Toán 6 | Giải bài tập Sách bài tập Toán 6

1 tháng 5 2018

a. Ta có:

Giải sách bài tập Toán 6 | Giải bài tập Sách bài tập Toán 6

b. Theo kết quả câu a,ta có:

Giải sách bài tập Toán 6 | Giải bài tập Sách bài tập Toán 6

Giải: 1) A=1/1.3+1/3.5+1/5.7+1/7.9+...+1/2017.2019     A=1/2.(2/1.3+2/3.5+2.5.7+2/7.9+...+2/2017.2019)     A=1/2.(1/1-1/3+1/3-1/5+1/5-1/7+1/7-1/9+...+1/2017-1/2019)     A=1/2.(1/1-1/2019)     A=1/2.2018/2019     A=1009/2019 Chúc bạn học tốt!
30 tháng 7 2021

bn ơi viết đpá án hơi khó nhìn xíu nhalolang

26 tháng 5 2018

a, Gọi phân số cần tìm là \(\dfrac{a}{b}\); phân số sau khi cộng là \(\dfrac{a+b}{b}\).

Theo bài ra ta có ;

\(\dfrac{a}{b}\cdot7=\dfrac{a+b}{b}\\ \Leftrightarrow\dfrac{7a}{b}=\dfrac{a}{b}+1\\ \Leftrightarrow\dfrac{7a}{b}-\dfrac{a}{b}=1\\ \Leftrightarrow\dfrac{6a}{b}=1\\ \Leftrightarrow6a=b\)

\(\dfrac{a}{b}\) là phân số tối giản nên \(\dfrac{a}{b}=\dfrac{1}{6}\)

Vậy phân số tối giản cần tìm là \(\dfrac{1}{6}\)

b, Đặt \(A=\dfrac{1}{2^2}+\dfrac{1}{3^2}+\dfrac{1}{4^2}+...+\dfrac{1}{n^2}\)

Ta có :

\(A< \dfrac{1}{1\cdot2}+\dfrac{1}{2\cdot3}+\dfrac{1}{3\cdot4}+...+\dfrac{1}{\left(n-1\right)\cdot n}=1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{n-1}-\dfrac{1}{n}\\ =\dfrac{1}{2}-\dfrac{1}{n}\)

\(n\ge2vàn\in N\Rightarrow\dfrac{1}{2}\ge\dfrac{1}{n}\Rightarrow\dfrac{1}{2}-\dfrac{1}{n}< \dfrac{1}{2}\)

\(\dfrac{1}{2}< \dfrac{97}{144}\Rightarrow\dfrac{1}{2}-\dfrac{1}{n}< \dfrac{97}{144}\Leftrightarrow A< \dfrac{97}{144}\\ \RightarrowĐpcm\)