Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
3. Gọi d là ƯCLN(2n + 3, 4n + 8), d ∈ N*
\(\Rightarrow\hept{\begin{cases}2n+3⋮d\\4n+8⋮d\end{cases}\Rightarrow\hept{\begin{cases}2\left(2n+3\right)⋮d\\4n+8⋮d\end{cases}\Rightarrow}\hept{\begin{cases}4n+6⋮d\\4n+8⋮d\end{cases}}}\)
\(\Rightarrow\left(4n+8\right)-\left(4n+6\right)⋮d\)
\(\Rightarrow2⋮d\)
\(\Rightarrow d\in\left\{1;2\right\}\)
Mà 2n + 3 không chia hết cho 2
\(\Rightarrow d=1\)
\(\RightarrowƯCLN\left(2n+3,4n+8\right)=1\)
\(\Rightarrow\frac{2n+3}{4n+8}\) là phân số tối giản.
1 ) Vì số nguyên tố chỉ có 2 ước tự nhiên là 1 và chính nó
Để \(\left(n+3\right)\left(n+1\right)\)là nguyên tố
\(\Rightarrow n+1=1,n+3\)là số nguyên tố do \(n+3>n+1\)
\(n=0\Rightarrow\left(n+3\right)\left(n+1\right)=3\)
\(\Rightarrow n=0\)( chọn )
2 ) Tổng 7a5 + 8b4 chia hết cho 9 nên 7 + a + 5 + 8 + b + 4 \(⋮\) 9 , tức là :
24 + a + b \(⋮\) 9 . Suy ra a + b \(\in\){ 3 ; 12 } .
Ta có a + b > 3 ( vì a – b = 6 ) nên a + b = 12 .
Từ a + b = 12 và a – b = 6 , ta có a = ( 12 + 6 ) : 2 = 9
Suy ra b = 3 .
Thử lại : 795 + 834 = 1629 chia hết cho 9 .
Giải:
Theo đề bài ta có:
\(\frac{14}{15}\div\frac{a}{b}=\frac{14b}{75a}\in N\Rightarrow\left\{\begin{matrix}14⋮a\\b⋮75\end{matrix}\right.\)
\(\frac{6}{165}\div\frac{a}{b}=\frac{6b}{165a}\in N\Rightarrow\left\{\begin{matrix}6⋮a\\b⋮165\end{matrix}\right.\)
Để phân tối giản \(\frac{a}{b}\) lớn nhất
\(\Rightarrow\left\{\begin{matrix}a=ƯCLN\left(14;6\right)=2\\b=BCNN\left(75;165\right)=825\end{matrix}\right.\)
Vậy phân số tối giản \(\frac{a}{b}\) lớn nhất là \(\frac{2}{825}\)
\(\dfrac{4}{75}\): \(\dfrac{a}{b}\) = \(\dfrac{4}{75}\) . \(\dfrac{b}{a}\)= \(\dfrac{4b}{75a}\)
=> b \(⋮\)75
\(\left[{}\begin{matrix}4⋮a\Rightarrow a\inƯ\left(4\right)\\b⋮a\Rightarrow b\in BC\left(75;a\right)\end{matrix}\right.\)
\(\dfrac{6}{165}\): \(\dfrac{a}{b}\) = \(\dfrac{6}{165}\) . \(\dfrac{b}{a}\)= \(\dfrac{6b}{165a}\)
=> b\(⋮\) 165
\(\left[{}\begin{matrix}6⋮a\Rightarrow a\inƯ\left(6\right)\\b⋮a\Rightarrow b\in BC\left(165;a\right)\end{matrix}\right.\)
để \(\dfrac{a}{b}\) lớn nhất thì a phải :
a \(\in\) UCLN(6;4) => a = 2
để \(\dfrac{a}{b}\) lớn nhất thì b phải :
b \(\in\) BCNN(75;2;165) => b=1650
=> \(\dfrac{a}{b}\) = \(\dfrac{2}{1650}\)