Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b: Áp dụng hệ thức lượng trong tam giác vuông vào ΔABH vuông tại H có HD là đường cao ứng với cạnh huyền AB, ta được:
\(AD\cdot AB=AH^2\left(1\right)\)
Áp dụng hệ thức lượng trong tam giác vuông vào ΔAHC vuông tại H có HE là đường cao ứng với cạnh huyền AC, ta được:
\(AE\cdot AC=AH^2\left(2\right)\)
Từ (1) và (2) suy ra \(AD\cdot AB=AE\cdot AC\)
\(a,BC=HB+HC=25\left(cm\right)\)
Áp dụng HTL:
\(\left\{{}\begin{matrix}AB^2=BH\cdot BC=225\\AC^2=CH\cdot BC=400\\AH^2=BH\cdot CH=144\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}AB=15\left(cm\right)\\AC=20\left(cm\right)\\AH=12\left(cm\right)\end{matrix}\right.\)
Vì \(\widehat{ADH}=\widehat{AEH}=\widehat{BAC}=90^0\) nên ADHE là hcn
Do đó \(DE=AH=12\left(cm\right)\)
Hướng dẫn:
∆ ABC ∼ ∆ HAC nên
Suy ra HC = 4/3HA = 12. Chọn C.
1/ Cho tam giác DEF vuông tại D, đường cao DH. Khi đó hệ thức nào sau đây là đúng?
A/ DE^2 = EF.HE B/ DE^2 = EF.HF
C/ DE^2 = HF.HE D/ DE^2 = DH.HE
2/ Cho tam giác ABC vuông tại A, đường cao AH, bt AH = 6cm, HB = 4cm, khi đó độ dài HC là?
A/ 1,5cm B/ 2cm
C/ 9cm D/ 10cm