K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 6 2017

search : https://hoc24.vn/hoi-dap/question/56467.html

20 tháng 3 2021

anh đây đẹp troai, chim dài mét hai !

2 tháng 4 2021

con ciu 5cm im đi

25 tháng 5 2017

*Gọi G là giao điểm của AH và DE

Ta có: GA = GD = GH = GE (tính chất hình chữ nhật)

Suy ra tam giác GHD cân tại G

Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

Suy ra tam giác NCE cân tại N ⇒ NC = NE     (16)

Từ (13) và (16) suy ra: NC = NH hay N là trung điểm của CH.

9 tháng 9 2021

\(b,\) Gọi O là giao điểm ED và AH

\(\Rightarrow OA=OD=OE=OH\\ \Rightarrow\widehat{OEH}=\widehat{OHE}\\ \Rightarrow\widehat{NEH}=\widehat{NHE}\left(\widehat{OEH}+\widehat{NEH}=\widehat{NHE}+\widehat{OHE}=90\right)\\ \Rightarrow NE=EH\left(\Delta NEH.cân\right)\left(1\right)\)

Ta có \(\widehat{NEH}+\widehat{NEC}=90;\widehat{NHE}+\widehat{ECH}=90\Rightarrow\widehat{NEC}=\widehat{EHC}\)

\(\Rightarrow NE=NC\left(\Delta NEC.cân\right)\left(2\right)\\ \left(1\right)\left(2\right)\Rightarrow NC=NH\)

\(Cmtt\Leftrightarrow\Delta HMD;\Delta MDB.cân\Leftrightarrow MH=MB\left(=MD\right)\)

\(c,\) Xét tam giác HBD và CEH vuông tại E,D có \(DM=\dfrac{1}{2}HB=2\left(cm\right);EN=\dfrac{1}{2}CH=3\left(cm\right)\)

Áp dụng HTL vào tam giác ABC vuông tại A

\(AH^2=BH\cdot HC=4\cdot9=36\\ \Leftrightarrow AH=6\left(cm\right)\\ \Leftrightarrow DE=AH=6\left(cm\right)\left(hcn.AEHD\right)\)

\(S_{DENM}=\dfrac{1}{2}DE\cdot\left(MD+EN\right)=\dfrac{1}{2}\cdot6\cdot5=15\left(cm^2\right)\)

 

 

9 tháng 9 2021

undefined

undefined

22 tháng 6 2016

a) Tính độ dài đoạn thẳng DE: 
DAE^ = ADH^ = AEH^ = 1v => ADHE là hình chữ nhật 
=> DE = AH 
mà AH^2 = HB.HC = 9.4 => AH = 3.2 = 6 
vậy DE = 6 

b) Các đường thẳng vuông góc với DE tại D và E lần lượt cắt BC tại M và N ,CM:M là trung điểm của BH,N là trung điểm của CH. 
CEN^ = DEH^ ( góc có cạnh tương ứng vuông góc) 
ECN^ = DAH^ ( ------------nt--------------) 
DAH^ = DEH^ ( cùng chắn cung DH của đường tròn ngoại tiếp tứgiác ADHE) 
=> CEN^ = ECN^ => NE = NC (1) 
HEN^ = AED^ ( góc có cạnh tương ứng vuông góc) 
EHN^ = AHD^ ( -----nt-----) 
AED^ = AHD^ ( cùng chắn cung AD của đường tròn ngoại tiếp tứ giác ADHE) 
=> HEN^ = EHN^ => NE = NH (2) 
(1) và (2) => NC = NH hay M là trung điểm của CH. 
chứng minh tương tự M là trung điểm của BH. 

c) Tính diện tích tứ giác DENM 
DENM là hình thang vuông, có: 
DM = BH/2 = 4/2 = 2 
EN = CH/2 = 9/2 
S(DENM) = (DM + EN).DE/2 = (2 + 9/2).6/2 = 39/2 đvdt

22 tháng 10 2019

Tứ giác ARHD là hình chữ nhật vì:  A ^ = E ^ = D ^ = 90 ∘ nên DE = AH.

Xét ∆ ABC vuông tại A có A H 2 = HB.HC = 4.9 = 36 ⇔ AH = 6

Nên DE = 6cm

Đáp án cần chọn là : D

b: Xét ΔAHB vuông tại H có HD là đường cao

nên \(AD\cdot AB=AH^2\left(1\right)\)

Xét ΔAHC vuông tại H có HE là đường cao

nên \(AE\cdot AC=AH^2\left(2\right)\)

Từ (1) và (2) suy ra \(AD\cdot AB=AE\cdot AC\)