Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
AM=BM(gt)
Do đó : tam giác AME=tam giác CME (c.g.c)
Suy ra MA =BC(2 cạnh tương ứng )(1)
góc MAE = góc CBE (2 góc tương ứng )
=> MA // BC(3)
+)Xét tam giác ADN và tam giác CDB có:
BD=DN(gt)
góc ADN = góc CDB(đđ)
AD=DC(gt)
Do đó : tam giác ADN = tam giác CDB (c.g.c)
Suy ra AN = BC(2 cạnh tương ứng )(2)
góc NAB = góc BCD (2 góc tương ứng )
=> AN//BC(4)
Từ (3) và(4) suy ra 3 điểm M , A , N thẳng hàng
=> MN=MA+NA
Từ (1) và(2) suy ra BC=MA=NA
=> BC =MA+NA2=MN2
Hay MN = 2BC (ĐPCM)
a, Vì \(\Delta ABC\) đều và \(O\) là giao điểm 3 đường trung trực nên \(AO\) là tia phân giác của \(\widehat{A}\)
\(\Rightarrow\widehat{MAO}=\dfrac{\widehat{BAC}}{2}=30^o\)
b, Tương tự a, \(\widehat{OCB}=30^o\)
Chứng minh được: \(\Delta MAO=\Delta OPC\left(c.g.c\right)\)
Ta có: \(\Delta MAO=\Delta OPC\Rightarrow OM=OP\left(1\right)\)
c, Tương tự b
\(\Delta MAO=\Delta NBO\left(c.g.c\right)\)
\(\Rightarrow ON=OM\left(2\right)\)
Từ (1) và (2) suy ra O là giao điểm
3 đương trung trực của tam giác MNP