Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) +) Ta có:
^BOC = 90\(^o\)+ \(\frac{\widehat{BAC}}{2}\)= 120\(^o\)
+) OF là phân giác của ^BOC
=> ^BOF = ^COF = 60\(^o\)
+) Ta có: ^BOE + ^BOC = 180\(^o\)
=> ^BOE = 180\(^o\)- 120 \(^o\)= 60 \(^o\)
=> ^DOC = ^BOE = 60 \(^o\) ( đối đỉnh)
+) Xét \(\Delta\)OBF và \(\Delta\)OBE có:
^BOF = ^BOE = 60\(^o\)
OB chung
^OBF = ^OBE ( BO là phân giác ^EBF )
=> \(\Delta\)OBF = \(\Delta\)OBE
=> OE = OF (1)
+) Xét \(\Delta\)ODC và \(\Delta\)OFC có:
^DOC = ^FOC = 60\(^o\)
OC chung
^DCO = ^FCO ( CO là phân giác ^DCF )
=> \(\Delta\)ODC = \(\Delta\)OFC
=> OD = OF (2)
Từ (1); (2) => OD = OE = OF
b) Ta có: OE = OF => \(\Delta\)OEF cân và ^EOF = ^EOB + ^FOB = 60\(^o\)+60\(^o\)=120\(^o\)
=> ^OEF = ^OFE = ( 180\(^o\)-120\(^o\)) : 2 = 30 \(^o\)
Tương tự ta có thể chứng minh đc:
^OFD = ^ODF = 30\(^o\)
^OED = ^ODE = 30\(^o\)
=> ^DFE = ^DEF = ^EDF = 30\(^o\)+30\(^o\)= 60\(^o\)
=> Tam giác DEF đều
Tại sao ^BOC = 90\(^o+\frac{\widehat{BAC}}{2}\). Em nên nhớ nó bởi vì sẽ ứng dụng vào rất nhiều bài.
Xét \(\Delta\)BOC có: ^BOC + ^BCO + ^CBO = 180\(^o\)
=> ^BOC = 180\(^o\)- ( ^BCO + ^CBO ) = 180\(^o\)- ( \(\frac{1}{2}\)^BCA + \(\frac{1}{2}\)^CBA) = 180\(^o\)- \(\frac{1}{2}\)( ^BCA + ^CBA) (1)
Xét \(\Delta\)ABC có: ^BAC + ^BCA + ^ABC = 180\(^o\)=> ^BCA + ^ABC = 180\(^o\)- ^BAC (2)
Từ (1); (2) => ^BOC = 180\(^o\) - \(\frac{1}{2}\)( 180\(^o\) - ^BAC ) = 90\(^o\)+ \(\frac{\widehat{BAC}}{2}\)
a) Xét tam giác ABC có
(góc) A+B+C=180o(định lí tổng 3 góc của 1 tam giác)
hay 60o+ABC+ACB=180o
(góc) ABC+ACB=180o-60o=120o
Ta có BD là tia phân giác của góc ABC,CE là tia phân giác của góc ACB
=> (góc) DBC+DCB= \(\frac{ABC+ACB}{2}\)\(=\)\(\frac{120^o}{2}=60^o\)
Xét tam giác DBC có
(góc) BDC+ DBC+DCB=180o(Định lí tổng 3 góc của một tam giác)
hay (góc) BDC+60o=180o
(góc) BDC =180o-60o=120o
(xl, mik làm đc câu a thôi nha)
Bài 1:
Xét ΔADO vuông tại D và ΔAEO vuông tại E có
AO chung
\(\widehat{DAO}=\widehat{EAO}\)
Do đó: ΔADO=ΔAEO
Suy ra: OD=OE
Bài 2:
a: Xét ΔABE và ΔACD có
AB=AC
\(\widehat{BAE}\) chung
AE=AD
Do đó: ΔABE=ΔACD
Suy ra: BE=CD
b: Xét ΔBDC và ΔCEB có
BD=EC
\(\widehat{DBC}=\widehat{ECB}\)
BC chung
DO đó: ΔBDC=ΔCEB
Suy ra: \(\widehat{ODB}=\widehat{OEC}\)
Xét ΔODB và ΔOEC có
\(\widehat{ODB}=\widehat{OEC}\)
BD=CE
\(\widehat{DBO}=\widehat{ECO}\)
Do đó: ΔODB=ΔOEC
có A = 60 độ (gt)
suy ra c+b=180-60=120
mà c1=1/2 c:b1=1/2 b ( tích chất tia phân giác )
suy ra c1+b1=120:2=60
suy ra BOC = 180-60=120
B)
xét Tam giác BOE và BOF bằng nhau theo ( cạnh góc cạnh)
suy ra OB là tia phân giác ủa EOF
C: có Phân giác Ce và BD cắt Nhau tại O
mà AF cắt CE và BD tại O suy ra AF LÀ phân giác của góc BAC
từ đó suy ra OD=OE=OF ( tích chất của tia phân giác )
, hình thì m tự vẽ bố éo rảnh ngồi vẽ :))
a) Ta có \(\widehat{B_1}=\widehat{B_2};\widehat{C_1}=\widehat{C_2}\Rightarrow\widehat{B_1}+\widehat{C_1}=\frac{\widehat{B}+\widehat{C}}{2}=\frac{180^o-\widehat{A}}{2}=\frac{180^o-60^o}{2}=60^o\)
Vậy thì \(\widehat{BOC}=180^o-60^o=120^o\)
b) Xét tam giác BEO và BFO có:
BE = BF (gt)
BO chung
\(\widehat{B_1}=\widehat{B_2}\)
\(\Rightarrow\Delta BEO=\Delta BFO\left(c-g-c\right)\)
\(\Rightarrow\widehat{BOE}=\widehat{BOF}\) (Hai góc tương ứng)
Vậy OB là tia phân giác góc EOF.
c) Gọi K, H là chân đường cao hạ từ O xuống AB và AC
Do O là giao điểm của 3 đường phân giác nên OH = OK
Ta có \(\widehat{EAD}+\widehat{EOD}=60^o+\widehat{BOC}=60^o+120^o=180^o\)
\(\Rightarrow\widehat{AEO}+\widehat{ODK}=180^o\Rightarrow\widehat{OEH}=\widehat{ODK}\Rightarrow\widehat{HOE}=\widehat{KOD}\)
Vậy thì \(\Delta OEH=\Delta ODK\) (Cạnh góc vuông - góc nhọn kề)
\(\Rightarrow OE=OD\)
a: góc ABC+góc ACB=180-60=120 độ
=>góc OBC+góc OCB=1/2*120=60 độ
góc BOC=180-60=120 độ
b: Kẻ OK là phân giác của góc BOC
=>góc BOK=góc COK=120/2=60 độ
góc NOB+góc BOC=180 độ(kề bù)
=>góc NOB=180-120=60 độ
=>góc MOC=góc NOB=60 độ
=>góc NOB=góc BOK=góc KOC=góc MOC
Xét ΔONB và ΔOKB có
góc NOB=góc KOB
OB chung
góc OBN=góc OBK
=>ΔONB=ΔOKB
=>ON=OK
Xét ΔOKC và ΔOMC có
góc KOC=góc MOC
OC chung
góc KCO=góc MCO
=>ΔOKC=ΔOMC
=>OK=OM
=>ON=OM
c: BN+CM
=BK+KC
=BC
Giải:
Kẻ OI là tia phân giác của \(\widehat{AOC}\)
Xét \(\Delta ABC\) có: \(\widehat{A}+\widehat{B}+\widehat{C}=180^o\)
\(\Rightarrow\widehat{A}+60^o+\widehat{C}=180^o\)
\(\Rightarrow\widehat{A}+\widehat{C}=120^o\)
Ta có: \(\frac{1}{2}\left(\widehat{A}+\widehat{C}\right)=\frac{1}{2}.120^o\)
\(\Rightarrow\frac{1}{2}\widehat{A}+\frac{1}{2}\widehat{C}=60^o\)
\(\Rightarrow\widehat{A_1}+\widehat{C_1}=60^o\)
Xét \(\Delta AOC\) có: \(\widehat{A_1}+\widehat{C_1}+\widehat{AOC}=180^o\)
\(\Rightarrow60^o+\widehat{AOC}=180^o\)
\(\Rightarrow\widehat{BOC}=120^o\)
\(\Rightarrow\widehat{O_2}=\widehat{O_3}\left(=\frac{1}{2}\widehat{AOC}\right)\)
\(\Rightarrow\widehat{O_2}=\widehat{O_3}=60^o\)
Ta có: \(\widehat{O_4}=\widehat{A_1}+\widehat{C_1}\) ( góc ngoài \(\Delta AOC\) )
\(\Rightarrow\widehat{O_4}=60^o\)
\(\widehat{O_1}=\widehat{A_1}+\widehat{C_1}\) ( góc ngoài \(\Delta AOC\)
\(\Rightarrow\widehat{O_1}=60^o\)
Xét \(\Delta EOA,\Delta IOA\) có:
\(\widehat{A_1}=\widehat{A_2}\left(=\frac{1}{2}\widehat{A}\right)\)
AO: cạnh chung
\(\widehat{O_1}=\widehat{O_2}\left(=60^o\right)\)
\(\Rightarrow\Delta EOA=\Delta IOA\left(g-c-g\right)\)
\(\Rightarrow OE=OI\) ( cạnh t/ứng ) (1)
Xét \(\Delta DOC,\Delta IOC\) có:
\(\widehat{C_1}=\widehat{C_2}\left(=\frac{1}{2}\widehat{C}\right)\)
OC: cạnh chung
\(\widehat{O_3}=\widehat{O_4}\left(=60^o\right)\)
\(\Rightarrow\Delta DOC=\Delta IOC\left(g-c-g\right)\)
\(\Rightarrow OD=OI\) ( cạnh t/ứng ) (2)
Từ (1) và (2) \(\Rightarrow OE=OD\left(=OI\right)\)
Vậy \(OE=OD\)