K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 2 2020

A B C E D F O

a) +) Ta có:

^BOC = 90\(^o\)\(\frac{\widehat{BAC}}{2}\)= 120\(^o\)

+) OF là phân giác của ^BOC 

=> ^BOF = ^COF = 60\(^o\)

+) Ta có: ^BOE + ^BOC = 180\(^o\)

=> ^BOE = 180\(^o\)- 120 \(^o\)= 60 \(^o\)

=> ^DOC = ^BOE = 60 \(^o\) ( đối đỉnh)

+) Xét \(\Delta\)OBF và \(\Delta\)OBE có:

^BOF = ^BOE = 60\(^o\)

OB chung 

^OBF = ^OBE ( BO là phân giác ^EBF )

=> \(\Delta\)OBF = \(\Delta\)OBE 

=> OE = OF (1)

+) Xét \(\Delta\)ODC và \(\Delta\)OFC có:

^DOC = ^FOC = 60\(^o\)

OC chung 

^DCO = ^FCO ( CO là phân giác ^DCF )

=> \(\Delta\)ODC = \(\Delta\)OFC 

=> OD = OF (2)

Từ (1); (2) => OD = OE = OF
b) Ta có: OE = OF => \(\Delta\)OEF cân và ^EOF = ^EOB + ^FOB = 60\(^o\)+60\(^o\)=120\(^o\)

=> ^OEF = ^OFE = ( 180\(^o\)-120\(^o\)) : 2 = 30 \(^o\)

Tương tự ta có thể chứng minh đc:

^OFD = ^ODF = 30\(^o\)

^OED = ^ODE = 30\(^o\)

=> ^DFE = ^DEF = ^EDF = 30\(^o\)+30\(^o\)= 60\(^o\)

=> Tam giác DEF đều 

6 tháng 2 2020

Tại sao ^BOC = 90\(^o+\frac{\widehat{BAC}}{2}\). Em nên nhớ nó bởi vì sẽ ứng dụng vào rất nhiều bài.

Xét \(\Delta\)BOC có: ^BOC + ^BCO + ^CBO = 180\(^o\)

=> ^BOC = 180\(^o\)- ( ^BCO + ^CBO ) = 180\(^o\)- ( \(\frac{1}{2}\)^BCA + \(\frac{1}{2}\)^CBA) = 180\(^o\)- \(\frac{1}{2}\)( ^BCA + ^CBA) (1)

Xét \(\Delta\)ABC có: ^BAC + ^BCA + ^ABC = 180\(^o\)=> ^BCA + ^ABC = 180\(^o\)- ^BAC (2)

Từ (1); (2) =>  ^BOC = 180\(^o\) - \(\frac{1}{2}\)( 180\(^o\) - ^BAC ) = 90\(^o\)+  \(\frac{\widehat{BAC}}{2}\)

2 tháng 8 2016

ai đúng và nhanh nhất tớ !

15 tháng 11 2017

a) Xét tam giác ABC có 

(góc) A+B+C=180o(định lí tổng 3 góc của 1 tam giác)

hay  60o+ABC+ACB=180o

    (góc)   ABC+ACB=180o-60o=120o

Ta có BD là tia phân giác của góc ABC,CE là tia phân giác của góc ACB

=> (góc) DBC+DCB= \(\frac{ABC+ACB}{2}\)\(=\)\(\frac{120^o}{2}=60^o\)

Xét tam giác DBC có

(góc)         BDC+ DBC+DCB=180o(Định lí tổng 3 góc của một tam giác)

hay (góc)  BDC+60o=180o

        (góc) BDC          =180o-60o=120o

(xl, mik làm đc câu a thôi nha)

Bài 1: 

Xét ΔADO vuông tại D và ΔAEO vuông tại E có

AO chung

\(\widehat{DAO}=\widehat{EAO}\)

Do đó: ΔADO=ΔAEO

Suy ra: OD=OE

Bài 2: 

a: Xét ΔABE và ΔACD có

AB=AC
\(\widehat{BAE}\) chung

AE=AD

Do đó: ΔABE=ΔACD

Suy ra: BE=CD

b: Xét ΔBDC và ΔCEB có

BD=EC

\(\widehat{DBC}=\widehat{ECB}\)

BC chung

DO đó: ΔBDC=ΔCEB

Suy ra: \(\widehat{ODB}=\widehat{OEC}\)

Xét ΔODB và ΔOEC có 

\(\widehat{ODB}=\widehat{OEC}\)

BD=CE

\(\widehat{DBO}=\widehat{ECO}\)

Do đó: ΔODB=ΔOEC

19 tháng 1 2018

có A = 60 độ (gt)

suy ra c+b=180-60=120

mà c1=1/2 c:b1=1/2 b  ( tích chất tia phân giác )

suy ra c1+b1=120:2=60

suy ra BOC = 180-60=120

B)

xét Tam giác BOE và BOF  bằng nhau theo ( cạnh góc cạnh)

suy ra OB là tia phân giác ủa EOF

C: có Phân giác Ce và BD cắt Nhau tại O 

mà AF cắt CE và BD tại O  suy ra AF LÀ  phân giác của góc BAC

từ đó suy ra  OD=OE=OF ( tích chất  của tia phân giác )

, hình thì m tự vẽ bố éo rảnh ngồi vẽ :))

19 tháng 1 2018

60° A C B D E O F H K 2 1 2 1

a) Ta có \(\widehat{B_1}=\widehat{B_2};\widehat{C_1}=\widehat{C_2}\Rightarrow\widehat{B_1}+\widehat{C_1}=\frac{\widehat{B}+\widehat{C}}{2}=\frac{180^o-\widehat{A}}{2}=\frac{180^o-60^o}{2}=60^o\)

Vậy thì \(\widehat{BOC}=180^o-60^o=120^o\)

b) Xét tam giác BEO và BFO có:

BE = BF (gt)

BO chung

\(\widehat{B_1}=\widehat{B_2}\)

\(\Rightarrow\Delta BEO=\Delta BFO\left(c-g-c\right)\)

\(\Rightarrow\widehat{BOE}=\widehat{BOF}\)   (Hai góc tương ứng)

Vậy OB là tia phân giác góc EOF.

c) Gọi K, H là chân đường cao hạ từ O xuống AB và AC

Do O là giao điểm của 3 đường phân giác nên OH = OK 

Ta có \(\widehat{EAD}+\widehat{EOD}=60^o+\widehat{BOC}=60^o+120^o=180^o\)  

\(\Rightarrow\widehat{AEO}+\widehat{ODK}=180^o\Rightarrow\widehat{OEH}=\widehat{ODK}\Rightarrow\widehat{HOE}=\widehat{KOD}\)

Vậy thì \(\Delta OEH=\Delta ODK\)   (Cạnh góc vuông - góc nhọn kề)

\(\Rightarrow OE=OD\)

a: góc ABC+góc ACB=180-60=120 độ

=>góc OBC+góc OCB=1/2*120=60 độ

góc BOC=180-60=120 độ

b: Kẻ OK là phân giác của góc BOC

=>góc BOK=góc COK=120/2=60 độ

góc NOB+góc BOC=180 độ(kề bù)

=>góc NOB=180-120=60 độ

=>góc MOC=góc NOB=60 độ

=>góc NOB=góc BOK=góc KOC=góc MOC

Xét ΔONB và ΔOKB có

góc NOB=góc KOB

OB chung

góc OBN=góc OBK

=>ΔONB=ΔOKB

=>ON=OK

Xét ΔOKC và ΔOMC có

góc KOC=góc MOC

OC chung

góc KCO=góc MCO

=>ΔOKC=ΔOMC

=>OK=OM

=>ON=OM

c: BN+CM

=BK+KC

=BC

5 tháng 2 2017

cần vẽ hình 0 bạn

13 tháng 11 2017

k đúng mik nếu các bạn có thể nha!Cảm ơn các bạn^_^

8 tháng 12 2016

B A C O E D 1 2 3 4 1 2 1 2

Giải:
Kẻ OI là tia phân giác của \(\widehat{AOC}\)

Xét \(\Delta ABC\) có: \(\widehat{A}+\widehat{B}+\widehat{C}=180^o\)

\(\Rightarrow\widehat{A}+60^o+\widehat{C}=180^o\)

\(\Rightarrow\widehat{A}+\widehat{C}=120^o\)

Ta có: \(\frac{1}{2}\left(\widehat{A}+\widehat{C}\right)=\frac{1}{2}.120^o\)

\(\Rightarrow\frac{1}{2}\widehat{A}+\frac{1}{2}\widehat{C}=60^o\)

\(\Rightarrow\widehat{A_1}+\widehat{C_1}=60^o\)

Xét \(\Delta AOC\) có: \(\widehat{A_1}+\widehat{C_1}+\widehat{AOC}=180^o\)

\(\Rightarrow60^o+\widehat{AOC}=180^o\)

\(\Rightarrow\widehat{BOC}=120^o\)

\(\Rightarrow\widehat{O_2}=\widehat{O_3}\left(=\frac{1}{2}\widehat{AOC}\right)\)

\(\Rightarrow\widehat{O_2}=\widehat{O_3}=60^o\)

Ta có: \(\widehat{O_4}=\widehat{A_1}+\widehat{C_1}\) ( góc ngoài \(\Delta AOC\) )

\(\Rightarrow\widehat{O_4}=60^o\)

\(\widehat{O_1}=\widehat{A_1}+\widehat{C_1}\) ( góc ngoài \(\Delta AOC\)

\(\Rightarrow\widehat{O_1}=60^o\)

Xét \(\Delta EOA,\Delta IOA\) có:

\(\widehat{A_1}=\widehat{A_2}\left(=\frac{1}{2}\widehat{A}\right)\)

AO: cạnh chung

\(\widehat{O_1}=\widehat{O_2}\left(=60^o\right)\)

\(\Rightarrow\Delta EOA=\Delta IOA\left(g-c-g\right)\)

\(\Rightarrow OE=OI\) ( cạnh t/ứng ) (1)

Xét \(\Delta DOC,\Delta IOC\) có:
\(\widehat{C_1}=\widehat{C_2}\left(=\frac{1}{2}\widehat{C}\right)\)

OC: cạnh chung

\(\widehat{O_3}=\widehat{O_4}\left(=60^o\right)\)

\(\Rightarrow\Delta DOC=\Delta IOC\left(g-c-g\right)\)

\(\Rightarrow OD=OI\) ( cạnh t/ứng ) (2)

Từ (1) và (2) \(\Rightarrow OE=OD\left(=OI\right)\)

Vậy \(OE=OD\)