K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét tứ giác AMBD có 

I là trung điểm của AB

I là trung điểm của MD

Do đó: AMBD là hình bình hành

mà MA=MB

nên AMBD là hình thoi

10 tháng 12 2021

lm các ý còn lại ik bn

26 tháng 1 2022

a) AM là trung tuyến (gt). => M là trung điểm của BC.

=> BM = MC =  \(\dfrac{1}{2}\) BC.

Xét tứ giác AMBN:

I là trung điểm của AB (gt).

I là trung điểm của NM (N là điểm đối xứng với M qua I).

=> Tứ giác AMBN là hình bình hành (dhnb). 

=> AN = BM và AN // BM (Tính chất hình bình hành).

Mà BM = MC (cmt).

=> AN = MC.

Xét tứ giác ANMC:

AN = MC (cmt).

AN // MC (AN // BM).

=> Tứ giác ANMC là hình bình hành (dhnb).

b) Xét tam giác ABC vuông tại A: 

AM là trung tuyến (gt).

=> AM = \(\dfrac{1}{2}\) BC (Tính chất đường trung tuyến trong tam giác vuông).

Mà BM = MC = \(\dfrac{1}{2}\) BC (cmt).

=> AM = BM = MC = \(\dfrac{1}{2}\) BC.

Xét hình bình hành AMBN: AM = BM (cmt).

=> Tứ giác AMBN là hình thoi (dhnb).

c) Tứ giác ANMC là hình bình hành (cmt).

=> NM = AC (Tính chất hình bình hành).

Mà AC = 6 cm (gt).

=> NM = AC = 6 cm.

\(S_{AMBN}=\dfrac{1}{2}.AB.NM=\dfrac{1}{2}.4.6=12\left(cm^2\right).\)

d) Tứ giác AMBN là hình vuông (gt).

=> \(\widehat{AMB}=90^o\) (Tính chất hình vuông).

=> \(AM\perp BC.\)

Xét tam giác ABC vuông tại A:

AM là trung tuyến (gt).

AM là đường cao \(\left(AM\perp BC\right).\)

=> Tam giác vuông ABC vuông cân tại A.

16 tháng 12 2021

a: Xét tứ giác ANMC có

MN//AC

MN=AC

Do đó: ANMC là hình bình hành

21 tháng 12 2021

a: Xét tứ giác ADBM có

I là trung điểm của AB

I là trung điểm của DM

Do đó: ADBM là hình bình hành

mà AM=BM

nên ADBM là hình thoi

26 tháng 12 2021

A.

I là trung điểm của AB

I là trung điểm của MN (M đối xứng N qua I)

=> AMBN là hình bình hành

mà AM = MB (AM là đường trung tuyến của tam giác ABC vuông tại A)

=> AMBN là hình thoi

B.

Tam giác ABC vuông tại A có:

BC2 = AB2 + AC(định lý Pytago)

= 122 + 162

= 144 + 256

= 400 (cm)

BC = √400400 = 20 (cm)

mà AM = 1212BC = 20 : 2 = 10 (cm) (AM là đường trung tuyến của tam giác ABC vuông tại A)

AN = MB (AMBN là hình thoi)

mà MB = MC (M là trung điểm của BC)

=> AN = MC

mà AN // MC (AMBN là hình thoi)

=> ACMN là hình bình hành

=> MN = AC

mà AC = 16 (cm)

=> MN = 16 (cm)

a) Xét tứ giác ADMB có 

I là trung điểm của đường chéo AB(gt)

I là trung điểm của đường chéo MD(M và D đối xứng nhau qua I)

Do đó: ADMB là hình bình hành(Dấu hiệu nhận biết hình bình hành)

⇒AD//BM(Hai cạnh đối trong hình bình hành ADMB)

Ta có: ΔABC vuông tại A(gt)

mà AM là đường trung tuyến ứng với cạnh huyền BC(M là trung điểm của BC)

nên \(AM=\dfrac{BC}{2}\)(Định lí 1 về áp dụng hình chữ nhật vào tam giác vuông)

mà \(BM=CM=\dfrac{BC}{2}\)(M là trung điểm của BC)

nên AM=BM=CM

Hình bình hành ADBM có AM=BM(cmt)

nên ADBM là hình thoi(Dấu hiệu nhận biết hình thoi)

b) Sửa đề: E là giao điểm của AM và CD

Xét ΔABC có 

M là trung điểm của BC(gt)

I là trung điểm của AB(gt)

Do đó: MI là đường trung bình của ΔABC(Định nghĩa đường trung bình của tam giác)

⇒MI//AC và \(MI=\dfrac{AC}{2}\)(Định lí 2 về đường trung bình của tam giác)

mà D∈MI và \(MI=\dfrac{MD}{2}\)(I là trung điểm của MD)

nên MD//AC và MD=AC

Xét tứ giác ACMD có 

MD//AC(cmt)

MD=AC(cmt)

Do đó: ACMD là hình bình hành(Dấu hiệu nhận biết hình bình hành)

⇒Hai đường chéo AM và CD cắt nhau tại trung điểm của mỗi đường(Định lí hình bình hành)

mà AM cắt CD tại E(gt)

nên E là trung điểm của AM

hay AE=EM(Đpcm)

c) Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:

\(BC^2=AB^2+AC^2\)

\(\Leftrightarrow AB^2=BC^2-AC^2=5^2-4^2=9\)

hay AB=3(cm)

Ta có: \(MI=\dfrac{AC}{2}\)(cmt)

mà AC=4(cm)

nên \(MI=\dfrac{4}{2}=2\left(cm\right)\)

Xét ΔAMB có MI là đường cao ứng với cạnh AB(gt)

nên \(S_{ABM}=\dfrac{MI\cdot AB}{2}=\dfrac{2\cdot3}{2}=3\left(cm^2\right)\)

10 tháng 1 2023

loading...loading...