Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Vì ABCD là hình thoi => AB = AD. Xét tam giác ABD có AB = AD => Tam giác ABD cân tại A. Mà có góc A bằng 600 => Tam giác ABD đều. Xét tam giác đều ABD có BH là đường cao ( vì BD vuông góc với AD ) => BH cũng là đường trung tuyến của tam giác ABD (t/c) => H là trung điểm của AD (đpcm) Vậy, H là trung điểm của AD
────(♥)(♥)(♥)────(♥)(♥)(♥) __ ɪƒ ƴσυ’ʀє αʟσηє,
──(♥)██████(♥)(♥)██████(♥) ɪ’ʟʟ ɓє ƴσυʀ ѕɧα∂σѡ.
─(♥)████████(♥)████████(♥) ɪƒ ƴσυ ѡαηт тσ cʀƴ,
─(♥)██████████████████(♥) ɪ’ʟʟ ɓє ƴσυʀ ѕɧσυʟ∂єʀ.
──(♥)████████████████(♥) ɪƒ ƴσυ ѡαηт α ɧυɢ,
────(♥)████████████(♥) __ ɪ’ʟʟ ɓє ƴσυʀ ρɪʟʟσѡ.
──────(♥)████████(♥) ɪƒ ƴσυ ηєє∂ тσ ɓє ɧαρρƴ,
────────(♥)████(♥) __ ɪ’ʟʟ ɓє ƴσυʀ ѕɱɪʟє.
─────────(♥)██(♥) ɓυт αηƴтɪɱє ƴσυ ηєє∂ α ƒʀɪєη∂,
───────────(♥) __ ɪ’ʟʟ ʝυѕт ɓє ɱє.
( Sai đề ròi bạn .)
Nếu Kẻ BH vuông góc với AD thì \(H\equiv A\)
Mà nếu \(H\equiv A\)thì ABDE không thể là hình thoi và D cũng không là trung điểm của CE .
Hình vẽ sau sẽ chứng minh điều đó . ( Bạn sửa đề rồi mình làm cho )
A B C D
A=2(x2 -\(\frac{1}{2}\)x -\(\frac{1}{2}\))
=2(x2 - 2.\(\frac{1}{4}\)x + \(\frac{1}{16}\)- \(\frac{9}{16}\))
=2(x - \(\frac{1}{4}\))2 - \(\frac{9}{8}\). Vì 2(x - \(\frac{1}{4}\))2 lớn hơn hoặc bằng 0
=> 2(x - \(\frac{1}{4}\))2 - \(\frac{9}{8}\)lớn hơn hoặc bằng - \(\frac{9}{8}\)
Vậy GTNN của a là - \(\frac{9}{8}\) khi x - \(\frac{1}{4}\)= 0 => x = \(\frac{1}{4}\)
A B C D H E
a, Vì AB = BD (gt)
=> △ABD cân tại B
mà BH ⊥ AD
=> BH vừa là đường cao đồng thời là đường trung tuyến
=> H là trung điểm AD
lại có H là trung điểm của BE (HE=HB)
=> Tứ giác ABDE có 2 đường chéo cắt nhau tại trung điểm H của mỗi đường
=> ABDE là hình bình hành
mà BE ⊥ AD
=> ABDE là hình thoi
b, Vì ABCD là hình thoi => AB = CD
mà AB = DE ( do ABDE là hình thoi )
=> DC =DE