Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
2. A B C D O E F
+ AB // CD \(\Rightarrow\dfrac{AO}{CO}=\dfrac{BO}{DO}\)
\(\Rightarrow\dfrac{AO}{AO+CO}=\dfrac{BO}{BO+DO}\Rightarrow\dfrac{AO}{AC}=\dfrac{BO}{BD}\)
+ OE // CD => \(\dfrac{OE}{CD}=\dfrac{AO}{AC}\)
+ OF // CD => \(\dfrac{OF}{DC}=\dfrac{BO}{BD}\)
\(\Rightarrow\dfrac{OE}{CD}=\dfrac{OF}{DC}\Rightarrow OE=OF\)
Bài 1:
a: Xét hình thang ABCD có MN//AB//CD
nên AM/MD=BN/NC
b: AM/MD=BN/NC
=>MD/AM=NC/BN
=>\(\dfrac{MD+AM}{AM}=\dfrac{NC+BN}{BN}\)
=>AD/AM=BC/BN
=>AM/AD=BN/BC
c: AM/AD=BN/BC
=>1-AM/AD=1-BN/BC
=>DM/AD=CN/CB
a) A B C D O M N
Áp dụng hệ quả Ta-let vào \(\Delta\)OAB và \(\Delta\)OCD(AB//CD)
=>\(\dfrac{AO}{OC}=\dfrac{BO}{DO}\)
=>\(\dfrac{AO}{OC+AO}=\dfrac{BO}{DO+BO}\)
=>\(\dfrac{AO}{AC}=\dfrac{BO}{BD}\)(1)
Áp dụng hệ quả Ta lét vào \(\Delta\)ADC và \(\Delta\)AMO(MN//CD)
=>\(\dfrac{MO}{DC}=\dfrac{AO}{AC}\)(2)
Áp dụng hệ quả Ta lét vào \(\Delta\)BCD và \(\Delta\)BNO(MN//CD)
=>\(\dfrac{NO}{DC}=\dfrac{BO}{BD}\)(3)
Từ (1), (2),(3):
=>\(\dfrac{MO}{DC}=\dfrac{NO}{DC}\)
=> MO=NO(dpcm)
CHÚC BẠN HỌC TỐT!
a: Xét hình thang ABCD có MN//AB//CD
nên AM/MN=BN/NC
=>AM/AD=BN/BC(1)
Xét ΔADC có MO//DC
nên MO/DC=AM/AB(2)
Xét ΔBDC có ON//DC
nên ON/DC=BN/BC(3)
Từ (1), (2) và (3) suy ra MO=ON(đpcm)
b:
Để \(\dfrac{1}{AB}+\dfrac{1}{CD}=\dfrac{2}{MN}\) thì \(\dfrac{MN}{AB}+\dfrac{MN}{CD}=2\)
MN=2ON=2OM
\(\dfrac{2OM}{AB}+\dfrac{2ON}{CD}=2\left(\dfrac{OM}{AB}+\dfrac{ON}{CD}\right)\)
mà OM/AB=DO/DB
và ON/CD=BO/BD
nên \(VT=2\cdot\left(\dfrac{DO}{DB}+\dfrac{BO}{DB}\right)=2\left(đpcm\right)\)
2b
do ABCDlà hbh
=> AD=BC
AB//CD=>NB//CD
AD//BC => AD//CK
vì NB//CD
=>\(\dfrac{DM}{MK}=\dfrac{AD}{CK}\) (theo hệ quả ta-lét)
mà AD=BC
=> \(\dfrac{DM}{MK}=\dfrac{BC}{CK}\) (*)
vì AD//CK
=> \(\dfrac{DN}{DK}=\dfrac{BC}{CK}\) (theo đl ta-lét) (**)
Từ (*) và (**) ta có
\(\dfrac{DN}{DK}=\dfrac{DM}{MK}\) =>\(\dfrac{MK}{DK}=\dfrac{DM}{DN}\)
ta có
\(\dfrac{DM}{DN}+\dfrac{DM}{DK}=\dfrac{MK}{DK}+\dfrac{DM}{DK}=\dfrac{DK}{DK}=1\) (đpcm)
Em tham khảo nha.
Coi AB = 1, DC = k thì \(\frac{DO}{OB}=\frac{DC}{AB}=k\Rightarrow\frac{DO}{DB}=\frac{k}{k+1}\)
\(\Rightarrow OE=OF=\frac{k}{k+1}\Rightarrow EF=\frac{2k}{k+1}\)
Ta có \(\frac{1}{AB}+\frac{1}{CD}=\frac{1}{1}+\frac{1}{k}=\frac{k+1}{k}\)
\(\frac{2}{EF}=\frac{2}{\frac{2k}{k+1}}=\frac{k+1}{k}\)
Vậy nên \(\frac{1}{AB}+\frac{1}{CD}=\frac{2}{EF}\)