1) Cho đường tròn tâm O, đường kính AB=2R, C là trung điểm của OA; D là một điểm của đườ...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: góc ADB=1/2*sđ cung AB=90 độ

Xét ΔADB vuông tại D có sin DAB=DB/AB=1/2

=>góc DAB=30 độ

OA=R

=>AC=OC=R/2

Xet ΔECA vuông tại C có tan EAC=EC/AC

=>EC/0,5R=tan30

=>EC=R*căn 3/6

=>EA=căn 3/3*R

\(DA=\sqrt{\left(2R\right)^2-R^2}=R\sqrt{3}\)

\(EC=R\sqrt{3}-R\cdot\dfrac{\sqrt{3}}{3}=\dfrac{2}{3}\cdot\sqrt{3}\cdot R\)

b: Xet ΔADBvuông tại D và ΔFCB vuông tại C có

góc B chung

=>ΔADB đồng dạng vơi ΔFCB

c: Xét ΔBAF có

FC,AD là đường cao

FC cắt AD tại E

=>E là trực tâm

=>BE vuông góc AF

12 tháng 4 2018

a) Chứng minh tích BD.CEBD.CE không đổi.

Xét hai tam giác: ΔBOD∆BOD và ΔCEO∆CEO, ta có: ˆB=ˆC=600B^=C^=600 (gt) (1)

Ta có ˆDOCDOC^ là góc ngoài của ΔBDO∆BDO nên: ˆDOC=ˆB+ˆD1DOC^=B^+D^1

hay ˆO1+ˆO2=ˆB+ˆD1600+ˆO2=600+ˆD1O1^+O2^=B^+D1^⇔600+O2^=600+D1^

ˆO2=ˆD1(2)⇔O2^=D1^(2) 

Từ (1) và (2) ΔBOD⇒∆BOD đồng dạng ΔCEO∆CEO (g.g)

BDBO=COCEBD.CE=BO.CO⇒BDBO=COCE⇒BD.CE=BO.CO

hay BD.CE=BC2.BC2=BC24BD.CE=BC2.BC2=BC24 (không đổi)

Vậy BD.CE=BC24BD.CE=BC24 không đổi

b) Chứng minh ΔBODΔBOD đồng dạng ΔOEDΔOED

Từ câu (a) ta có: ΔBOD∆BOD đồng dạng ΔCEO∆CEO

ODOE=BDOC=BDOB⇒ODOE=BDOC=BDOB (do OC=OBOC=OB)

Mà ˆB=ˆDOE=600B^=DOE^=600 

Vậy ΔBODΔBOD đồng dạng ΔOEDΔOED (c.g.c) ˆBDO=ˆODE⇒BDO^=ODE^  

hay DODO là tia phân giác của góc BDEBDE

c) Vẽ OKDEOK⊥DE và gọi II là tiếp điểm của (O)(O) với ABAB, khi đó OIABOI⊥AB. Xét hai tam giác vuông: IDOIDO và KDOKDO, ta có:

 

DODO chung

ˆD1=ˆD2D1^=D2^ (chứng minh trên)

Vậy ΔIDOΔIDO = ΔKDOΔKDOOI=OK⇒OI=OK

Điều này chứng tỏ rằng OKOK là bán kính của (O)(O) và OKDEOK⊥DE nên KK là tiếp điểm của DEDE với (O)(O)hay DEDE tiếp xúc với đường tròn (O)

27 tháng 7 2016

vì a+b+c=0==> x=-(y+z) ==> \(x^2=\left(y+z\right)^2\)

<=> \(x^2=y^2+2yz+z^2\)

<=> \(x^2-y^2-z^2=2yz\)

<=> \(\left(x^2-y^2-z^2\right)^2=4y^2z^2\)

<=>\(x^4+y^4+z^4=2x^2y^2+2y^2z^2+2z^2x^2\)

<=> \(2\left(x^4+y^4+z^4\right)=\left(x^2+y^2+z^2\right)^2=a^4\)

==> \(x^4+y^4+z^4=\frac{a^4}{2}\)

3 tháng 6 2016

đề lạ wa mk nhìn chẳng hỉu