\(\Delta ABC\)vuông góc tại A . Đường phân giác CH của góc c cắt AB tại H...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 2 2018

Câu 1 :

A B C H K

a) Xét \(\Delta AHC,\Delta KHC\) có:

\(\widehat{CAH}=\widehat{CKH}\left(=90^{^O}\right)\)

\(CH:Chung\)

\(\widehat{ACH}=\widehat{KCH}\) (CH là tia phân giac của \(\widehat{C}\))

=> \(\Delta AHC=\Delta KHC\) (cạnh huyền - góc nhọn) (*)

b) Từ (*) suy ra :

\(AC=CK\) (2 cạnh tương ứng)

Xét \(\Delta AKC\) có :

\(AC=CK\left(cmt\right)\)

=> \(\Delta AKC\) cân tại A (đpcm)

7 tháng 2 2018

D E F 10 24 26

Xét \(\Delta DEF\) có :

\(DF^2=EF^2-DE^2\) (Định lí PITAGO đảo)

=> \(DF^2=26^2-10^2\)

=> \(DF^2=576^{ }\)

=> \(DF=\sqrt{576}=24\)

Mà theo bài ra : \(DF=24\left(cm\right)\)

Do đó , \(\Delta DEF\) là tam giác vuông

7 tháng 2 2018

a) Xét tam giác ABE và HBE có :

Cạnh BE chung

AB = BH

\(\widehat{ABE}=\widehat{HBE}\)

\(\Rightarrow\Delta ABE=\Delta HBE\left(c-g-c\right)\)

\(\Rightarrow\widehat{BHE}=\widehat{BAE}=90^o\Rightarrow EH\perp BC\)

b) Gọi giao điểm của AH và BE = I.

Dễ dàng chứng minh được \(\Delta AIB=\Delta HIB\left(c-g-c\right)\)

\(\Rightarrow AI=IH;\widehat{AIB}=\widehat{HIB}=90^o\)

Vậy BE là trung trực AH.

Sau này ta có thể dùng:

Vì BA = BH; EA = EH (\(\Delta ABE=\Delta HBE\) ) nên BE là trung trực AH.

c) Xét hai tam giác vuông BHK và BAC có

Góc B chung

BH = BA

\(\Rightarrow\Delta BHK=\Delta BAC\)  (Cạnh góc vuông và góc nhọn kề)

\(\Rightarrow KH=AC\)

Lại có \(AE=HE\Rightarrow EC=EK\)

d) Xét tam giác AKC có CA và KH là các đường cao nên E là trực tâm, suy ra BE là đường cao.

Vậy thì \(BE\perp KC\)

Lại có \(BE\perp AH\Rightarrow\)AH//KC

a: Xét ΔABD và ΔKBD có

BA=BK

góc ABD=góc KBD

BD chung

Do đó: ΔABD=ΔKBD

Suy ra: DA=DK

b: Ta có: ΔBAD=ΔBKD

nên góc BKD=góc BAD=90 độ

=>DK vuông góc với BC

=>DK//AH

11 tháng 5 2018

A B C D E a) Xét 2 tam giác vuông ABE và DBE, ta có:

BE: cạnh chung

AB=BD (gt)

=> \(\Delta ABE=\Delta DBE\) (cạnh huyền - cạnh góc vuông)

b) Ta có:

\(\Delta ABE=\Delta DBE\) (câu a)

=> EA = ED

=> \(\Delta ADE\) cân tại E


12 tháng 8 2017

a, Xét tam giác ABC vuông tại A có:

AB2+AC2=BC( định lý py-ta-go)

mà AB=9 cm(gt),AC=12cm(gt)nên:

92+122=BC2

=>BC2=81+144

=>BC2=225

=>BC2=152

=>BC=15(cm)

12 tháng 8 2017

b, Xét tam giác ABD và tam giác MBD có:

             ABD=MBD(vì BD là tia phân giác)

              BD chung

            \(\widehat{BAD}=\widehat{BMD}\left(=90^{ }\right)\)

            => tam giác ABD= tam giác MBD ( cạnh huyền góc nhọn )

16 tháng 8 2017

A B C I K

Xét tam giác BKI và CKI

Ta có BI=CI; IK chung; KC=KB (Vì K nằm trên AI)

Suy ra Tam giác BKI=Tam giác CKI => Góc KBI=Góc KCI

Mà Góc ABI=Góc ACI (Vì tam giác ABC cân)

Suy ra: Góc ABI+Góc KBI=Góc ACI+Góc KIC= 900

=> KC vuông góc với AC

16 tháng 8 2017

CM t/g ABK = t/g ACK => góc ABK = góc ACK => góc ACK = 90 độ => AC vuông góc với KC  

1) Cho \(\Delta ABC\) cân tại A, có AB = AC = 5cm, BC = 8cm. Kẻ \(AH\perp BC\) ( \(H\in BC\) ). a) C/m: HB = HC và \(\widehat{BAH}=\widehat{CAH}\) b) TÍnh AH. c) Gọi D và E là chân đường phân giác kẻ từ H đến AB. C/m: \(\Delta HDE\) cân. 2) Cho \(\Delta ABC\) có \(\widehat{B}\) = 90 độ, vẽ trung tuyến AM. Trên tia đối của tia MA lấy điểm E sao cho ME = AM. CMR: a) \(\Delta ABM=\Delta ECM\). b) AC > CE. c)...
Đọc tiếp

1) Cho \(\Delta ABC\) cân tại A, có AB = AC = 5cm, BC = 8cm. Kẻ \(AH\perp BC\) ( \(H\in BC\) ).

a) C/m: HB = HC và \(\widehat{BAH}=\widehat{CAH}\)

b) TÍnh AH.

c) Gọi D và E là chân đường phân giác kẻ từ H đến AB. C/m: \(\Delta HDE\) cân.

2) Cho \(\Delta ABC\) có \(\widehat{B}\) = 90 độ, vẽ trung tuyến AM. Trên tia đối của tia MA lấy điểm E sao cho ME = AM. CMR:

a) \(\Delta ABM=\Delta ECM\).

b) AC > CE.

c) \(\widehat{BAM}>\widehat{MAC.}\)

3) Cho góc nhọn \(\widehat{xOy}\). Gọi M là 1 điểm thuộc tia phân giác \(\widehat{xOy}\), kẻ \(MA\perp Ox\left(A\in Ox\right)\), \(MB\perp Oy\left(B\in Oy\right)\).

a) CMR: MA = MB và \(\Delta OAB\) cân.

b) Đường thẳng BM cắt Ox tại D, đường thẳng AM cắt Oy tại E. CMR: MD = ME.

c) C/m: \(OM\perp DE\)

" hép mê " giải nhanh nha, mai mình cần gấp rùi ! Tuy hơi dài nhưng các bạn lm từng bài một cx đc !huhu

1

Câu 1: 

a: Ta có:ΔABC cân tại A

mà AH là đường cao

nên AH là đường phân giác và H là trung điểm của BC

hay \(\widehat{BAH}=\widehat{CAH}\) và HB=HC

b: HB=HC=BC/2=4(cm)

nên AH=3(cm)

c: Sửa đề; D và E là chân đường cao kẻ từ H xuống AB và AC

Xét ΔADH vuông tại D và ΔAEH vuông tại E có

AH chung

\(\widehat{DAH}=\widehat{EAH}\)

Do đó: ΔAHD=ΔAHE

Suy ra: HD=HE

hay ΔHDE cân tại H