Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:
\(|a|.|b-1|< 1.1999=1999\)
\(\Leftrightarrow|ab-a|< 1999\)
Ta lại có: \(|ab-a|+|a-c|\ge|ab-a+a-c|\)
\(\Leftrightarrow|ab-c|\le|ab-a|+|a-c|< 1999+1999=3998\)
Vậy \(|ab-c|< 3998\)
PS: Giờ anh không còn online ở diễn đàn mình nhiều nữa. Phần lớn thời gian lên là giải giúp bài tập hộ người quen thế nên có thể em nhờ thì anh sẽ rất lâu mới làm hộ được. Tốt nhất em nên nhờ người khác thì nhanh hơn.
- Nếu cả 3 số đều bằng 0 thì BĐT hiển nhiên đúng
- Nếu \(a+b+c\ne0\)
Do \(0\le a;c\le1\Rightarrow\left(a-1\right)\left(c-1\right)\ge0\)
\(\Leftrightarrow ac+1\ge a+c\)
\(\Leftrightarrow ac+b+1\ge a+b+c\)
\(\Leftrightarrow\frac{c}{ac+b+1}\le\frac{c}{a+b+c}\)
Hoàn toàn tương tự, ta có: \(\frac{a}{ab+c+1}\le\frac{a}{a+b+c};\) \(\frac{b}{bc+a+1}\le\frac{b}{a+b+c}\)
Cộng vế với vế ta có đpcm
Dấu "=" xảy ra khi \(\left(a;b;c\right)=\left(1;1;1\right)\) hoặc \(\left(a;b;c\right)=\left(0;0;1\right);\left(0;1;1\right)\) và hoán vị