Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1.
Ta có: \(a^4+b^4\ge\frac{1}{2}\left(a^2+b^2\right)\left(a^2+b^2\right)\ge ab\left(a^2+b^2\right)\)
\(\Rightarrow VT\le\frac{a}{a+bc\left(b^2+c^2\right)}+\frac{b}{b+ca\left(c^2+a^2\right)}+\frac{c}{c+ab\left(a^2+b^2\right)}\)
\(\Rightarrow VT\le\frac{a^2}{a^2+abc\left(b^2+c^2\right)}+\frac{b^2}{b^2+abc\left(a^2+c^2\right)}+\frac{c^2}{c^2+abc\left(a^2+b^2\right)}\)
\(\Rightarrow VT\le\frac{a^2}{a^2+b^2+c^2}+\frac{b^2}{a^2+b^2+c^2}+\frac{c^2}{a^2+b^2+c^2}=1\)
Dấu "=" xảy ra khi \(a=b=c=1\)
Áp dụng bđt cauchy dạng engel ta có:
\(\frac{1}{a^2+b^2+1}+\frac{1}{b^2+c^2+1}+\frac{1}{c^2+a^2+1}\ge\frac{\left(1+1+1\right)^2}{a^2+b^2+b^2+c^2+c^2+a^2+1+1+1}\)
\(=\frac{9}{2\left(a^2+b^2+c^2\right)+3}\le\frac{9}{2\left(ab+bc+ca\right)+3}=\frac{9}{2.3+3}=1\left(đpcm\right)\)
Dấu "=" xảy ra khi a=b=c
1, Áp dụng bất đẳng thức Cô-si cho 2 số dương ta được
\(\frac{bc}{a}+\frac{ab}{c}\ge2\sqrt{\frac{bc}{a}.\frac{ab}{c}}=2b\)
\(\frac{ac}{b}+\frac{ab}{c}\ge2\sqrt{\frac{ac}{b}.\frac{ab}{c}}=2a\)
\(\frac{ac}{b}+\frac{bc}{a}\ge2\sqrt{\frac{ac}{b}.\frac{bc}{a}}=2c\)
Cộng từng vế vào ta được
\(2\left(\frac{bc}{a}+\frac{ac}{b}+\frac{ab}{c}\right)\ge2\left(a+b+c\right)\)
\(\Leftrightarrow\frac{bc}{a}+\frac{ac}{b}+\frac{ab}{c}\ge a+b+c\)
Dấu "=" khi a = b = c
2,Vì a,b,c là 3 cạnh của tam giác nên a,b,c > 0
Ta có các bđt quen thuộc sau : \(\frac{m}{n}>\frac{m}{m+n}\)và \(\frac{m}{n}< \frac{m+m}{m+n}\)
\(\Rightarrow\frac{m}{m+n}< \frac{m}{n}< \frac{m+m}{m+n}\). Áp dụng bđt này ta được
\(\frac{a}{a+b+c}< \frac{a}{b+c}< \frac{a+a}{a+b+c}\)
\(\frac{b}{a+b+c}< \frac{b}{a+b+c}< \frac{b+b}{a+b+c}\)
\(\frac{c}{a+b+c}< \frac{c}{a+b}< \frac{c+c}{a+b+c}\)
Cộng 3 bđt trên lại ta được đpcm
- Nếu cả 3 số đều bằng 0 thì BĐT hiển nhiên đúng
- Nếu \(a+b+c\ne0\)
Do \(0\le a;c\le1\Rightarrow\left(a-1\right)\left(c-1\right)\ge0\)
\(\Leftrightarrow ac+1\ge a+c\)
\(\Leftrightarrow ac+b+1\ge a+b+c\)
\(\Leftrightarrow\frac{c}{ac+b+1}\le\frac{c}{a+b+c}\)
Hoàn toàn tương tự, ta có: \(\frac{a}{ab+c+1}\le\frac{a}{a+b+c};\) \(\frac{b}{bc+a+1}\le\frac{b}{a+b+c}\)
Cộng vế với vế ta có đpcm
Dấu "=" xảy ra khi \(\left(a;b;c\right)=\left(1;1;1\right)\) hoặc \(\left(a;b;c\right)=\left(0;0;1\right);\left(0;1;1\right)\) và hoán vị