
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


a) Please xem lại đề
b) \(a+b\ge2\sqrt{a}+2\sqrt{b}-2\)
\(\Leftrightarrow\left(a-2\sqrt{a}+1\right)+\left(b-2\sqrt{b}+1\right)\ge0\)
\(\Leftrightarrow\left(\sqrt{a}-1\right)^2+\left(\sqrt{b}-1\right)^2\ge0\) (luôn đúng)
Đẳng thức xảy ra \(\Leftrightarrow a=b=1\)
c) Áp dụng BĐT Cauchy cho 3 số
\(a+\dfrac{1}{b\left(a-b\right)}=\left(a-b\right)+b+\dfrac{1}{b\left(a-b\right)}\ge3\sqrt[3]{\left(a-b\right).b.\dfrac{1}{b\left(a-b\right)}}=3\)
Đẳng thức xảy ra \(\Leftrightarrow a-b=b=\dfrac{1}{b\left(a-b\right)}\Leftrightarrow a=2;b=1\)
d) Áp dụng BĐT Cauchy cho 4 số
\(\dfrac{3x^4+16}{x^3}=3x+\dfrac{16}{x^3}=x+x+x+\dfrac{16}{x^3}\ge4\sqrt[4]{x.x.x.\dfrac{16}{x^3}}=8\)
Đẳng thức xảy ra \(\Leftrightarrow x=\dfrac{16}{x^3}\Leftrightarrow x=2\)

a) Ta có: \(\left(a-b\right)^2\ge0\)
=>\(a^2+b^2-2ab\ge0\left(đpcm\right)\)
b) \(\left(a+b\right)^2\ge0\)
=> \(a^2+b^2+2ab\ge0\)
<=> \(a^2+b^2\ge-2ab\)
<=> \(\dfrac{a^2+b^2}{2}\ge ab\) (đpcm)
c) ta có: \(\left(a+1\right)^2=a^2+2a+1\)
\(a\left(a+2\right)=a^2+2a\)
Vậy từ 2 điều trên => \(a\left(a+2\right)< \left(a+1\right)^2\)
d) \(m^2+n^2+2\ge2\left(m+n\right)\) (*)
<=>m2 - 2m +1 +n2 - 2n +1 \(\ge0\)
<=> \(\left(m-1\right)^2+\left(n-1\right)^2\ge0\) (1)
(1) đúng => (*) đúng
d) Bạn ấy giải rồi ,mình không giải nữa
e) Theo BĐT cauchy ta có: \(\dfrac{a^2+b^2}{2}\ge ab\Rightarrow\dfrac{a^2+b^2}{ab}\ge2\)
\(\Leftrightarrow\dfrac{a}{b}+\dfrac{b}{a}\ge2\Leftrightarrow\left(\dfrac{a}{b}+1\right)+\left(\dfrac{b}{a}+1\right)\ge4\)
\(\Leftrightarrow\dfrac{a+b}{b}+\dfrac{a+b}{a}\ge4\)
\(\Rightarrow\left(a+b\right)\left(\dfrac{1}{b}+\dfrac{1}{a}\right)\ge4\) (đpcm)
Vậy..........

17) \(\frac{10x^2-7x-5}{2x-3}\) là số nguyên khi 10x² - 7x - 5 \(⋮\) 2x - 3
Ta có: 10x² - 7x - 5 = 10x² - 15x + 8x - 12 + 7 = 5x(2x-3) + 4(2x-3) + 7
\(\Rightarrow\) 10x² - 7x - 5 \(⋮\) 2x - 3 khi và chỉ khi 7 chia hết cho 2x-3
\(\Rightarrow\) 2x - 3 \(\in\) Ư(7) \(\Leftrightarrow\) 2x - 3 = \(\left\{-1;1;-7;7\right\}\)
TH1: 2x-3 = -1 <=> x = 1
TH2: 2x-3 = 1 <=> x = 2
TH3: 2x-3 = -7 <=> x = -2
TH4: 2x-3 = 7 <=> x = 5
Vây có 4 giá trị nguyên của x là \(\left\{-2;1;2;5\right\}\)
23) Cm rằng
a) a2+b2−2ab ≥0
Ta có: a2+b2−2ab = a2−2ab+b2 = (a - b)2 ≥ 0 (đpcm)
b)\(\frac{a^2+b^2}{2}\) ≥ ab
Ta có: (a-b)2 ≥0 vs mọi a,b
\(\Leftrightarrow\) a2−2ab+b2 ≥0
\(\Leftrightarrow\) a2+b2 ≥ 2ab
\(\Leftrightarrow\) \(\frac{a^2+b^2}{2}\) ≥ ab (đpcm)
c) a(a+2)<(a+1)2
Ta có: a(a+2)= a2+2a
(a+1)2 = a2 + 2a + 1
\(\Rightarrow\) a(a+2)<(a+1)2 (đpcm)
d) m2+n2+2 ≥ 2(m+n)
Ta có: (m-n)2 \(\ge\) 0
\(\Leftrightarrow\) m2- 2mn+n2 \(\ge\) 0
\(\Leftrightarrow\) m2+n2 \(\ge\) 2mn
\(\Leftrightarrow\) m2+n2+2 \(\ge\) 2mn+2
\(\Leftrightarrow\) m2+n2+2 ≥ 2(m+n) (đpcm)
e) (a+b)(\(\frac{1}{a}+\frac{1}{b}\))≥4 (với a>0, b>0)
Ta có: (a - b)2 ≥ 0
\(\Leftrightarrow\) a2−2ab+b2 ≥ 0
\(\Leftrightarrow\) a2+2ab - 4ab+b2 ≥ 0
\(\Leftrightarrow\) (a + b)2 - 4ab≥ 0
\(\Leftrightarrow\) (a + b)2 ≥ 4ab
\(\Leftrightarrow\) \(\frac{\left(a+b\right)^2}{ab}\) ≥ 4
\(\Leftrightarrow\) (a+b) ( \(\frac{a+b}{ab}\) ) ≥ 4
\(\Leftrightarrow\) (a+b)(\(\frac{1}{a}+\frac{1}{b}\))≥4 (vs a,b > 0) (đpcm)

Bài 3:
\(\dfrac{a}{b}=\dfrac{3}{10}\)
=>3a=10b
=>\(a=\dfrac{10b}{3}\)
Do đó:\(B=\dfrac{4a\left(4a-10b\right)}{4a\left(2a-6b\right)}=\dfrac{a+3a-10b}{\dfrac{2.10b-18b}{3}}=\dfrac{a}{\dfrac{2}{3}b}=\dfrac{3a}{2b}\)
\(=\dfrac{\dfrac{3.10b}{3}}{2b}=\dfrac{10b}{2b}=5\)
bài 3 : a, cho \(3a^2+3b^2=10ab\) và b>a>0. tính gt biểu thức A= \(\dfrac{a-b}{a+b}\)
\(3a^2+3b^2=10ab\)
\(\Rightarrow3a^2-10ab+3b^2=0\)
\(\Rightarrow3a^2-9ab-ab+3b^2=0\)
\(\Rightarrow\left(3a^2-9ab\right)-\left(ab-3b^2\right)=0\)
\(\Rightarrow3a\left(a-3b\right)-b\left(a-3b\right)=0\)
\(\Rightarrow\left(a-3b\right)\left(3a-b\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}a-3b=0\\3a-b=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}a=3b\left(loai\right)\\a=\dfrac{b}{3}\end{matrix}\right.\)
a= 3b loại vì b > a > 0
Thay \(a=\dfrac{b}{3}\) vào biểu thức A ,có :
\(\dfrac{\dfrac{b}{3}-b}{\dfrac{b}{3}+b}=\dfrac{\dfrac{b-3b}{3}}{\dfrac{b+3b}{3}}=\dfrac{b-3b}{3}.\dfrac{3}{b+3b}=\dfrac{-2b}{4b}=-\dfrac{1}{2}\)
Vậy A =-1/2
b, tương tự tìm a theo b rồi thay vào biểu thức
Nếu bn ko lm đc thì bảo mk nha

a) \(\frac{x-y}{x+y}=\frac{x^2-y^2}{\left(x+y\right)^2}\) Dễ thấy \(\frac{x^2-y^2}{\left(x+y\right)^2}< \frac{x^2-y^2}{x^2+y^2}\)
vì \(\left(x+y\right)^2>x^2+y^2\) (với x > 0, y > 0)
Nên \(\frac{x-y}{x+y}< \frac{x^2-y^2}{x^2+y^2}\)
b) \(\frac{\left(a+b\right)^2}{a^2-b^2}=\frac{a+b}{a-b}=\frac{a^2-b^2}{\left(a-b\right)^2}< \frac{a^2+b^2}{\left(a-b\right)^2}\) (với a > 0, b > 0)
Vậy \(\frac{\left(a+b\right)^2}{a^2-b^2}< \frac{a^2+b^2}{\left(a-b\right)^2}\)
1 . Phân tích đa thức thành nhân tử :
a) 4x\(^2\) + 1 - y\(^2\) - 4x
b) 2x\(^2\) - y\(^2\) + 2xy - xy
2. Tìm x :
a) \(\dfrac{1}{2}\)x\(^2\) - ( 2 - 4 ) . ( \(\dfrac{1}{2}\)x + 3 ) = 12
b) ( 4x - 1 )\(^2\) = 4
c) x . ( x - 2018 ) - 5x + 2018 . 5 = 0
3 . Tính giá trị biểu thức phụ thuộc vào biến :
B = ( x + 3 )\(^2\) - ( x + 3 ) . ( 2 - 4x ) + ( 2x - 1 ) #Hỏi cộng đồng OLM #Toán lớp 8

1) a) ta có : \(4x^2+1-y^2-4x\Leftrightarrow\left(2x-2\right)^2-y^2=\left(2x-2-y\right)\left(2x-2+y\right)\)
b) \(2x^2-y^2+2xy-xy\Leftrightarrow2x\left(x+y\right)-y\left(x+y\right)=\left(2x-y\right)\left(x+y\right)\)
bài 2 : a) ta có : \(\dfrac{1}{2}x^2+2\left(\dfrac{1}{2}x+3\right)-12=0\Leftrightarrow\dfrac{1}{2}x^2+x-6=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-1+\sqrt{13}\\x=-1-\sqrt{13}\end{matrix}\right.\) câu này mk nghỉ đề sai
b) ta có : \(\left(4x-1\right)^2=4\Leftrightarrow\left[{}\begin{matrix}4x-1=2\\4x-1=-2\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{3}{4}\\x=-\dfrac{1}{4}\end{matrix}\right.\)
c) ta có : \(x\left(x-2018\right)-5x+2018.5=0\Leftrightarrow x^2-2023x+10090=0\)
\(\Leftrightarrow\left(x-2018\right)\left(x-5\right)=0\Leftrightarrow\left[{}\begin{matrix}x=2018\\x=5\end{matrix}\right.\)
bài 3 câu này bn chỉ cần nhân tung ra rồi rút gọn lại ra số là kết luận đc .
Bài 1:
\(a,4x^2+1-y^2-4x\)
\(=\left(4x^2-4x+1\right)-y^2\)
\(=\left(2x-1\right)^2-y^2\)
\(=\left(2x-1-y\right)\left(2x-1+y\right)\)
\(b,2x^2-y^2+2xy-xy\)
\(=\left(2x^2+2xy\right)-\left(y^2+xy\right)\)
\(=2x\left(x+y\right)-y\left(x+y\right)\)
\(=\left(x+y\right)\left(2x-y\right)\)
Bài 2:
\(a,\dfrac{1}{2}x^2-\left(2-4\right).\left(\dfrac{1}{2}x+3\right)=12\)
\(\Leftrightarrow\dfrac{1}{2}x^2+2\left(\dfrac{1}{2}x+1\right)=12\)
\(\Leftrightarrow\dfrac{1}{2}x^2+x+2=12\)
\(\Leftrightarrow\dfrac{1}{2}x^2+x-10=0\)
\(\Leftrightarrow\left(\dfrac{1}{\sqrt{2}}x\right)^2+2.\dfrac{1}{\sqrt{2}}x.\dfrac{1}{\sqrt{2}}+\dfrac{1}{2}-\dfrac{1}{2}-10=0\)
\(\Leftrightarrow\left(\dfrac{1}{\sqrt{2}}x+\dfrac{1}{\sqrt{2}}\right)^2-\dfrac{21}{2}=0\)
cái này vẫn có thể giải tiếp đc nhg mk thấy nếu bn hok lớp 8 thì chưa đã hok đến cái này nên mk nghĩ bn nên kt lại đề bài
\(b,\left(4x-1\right)^2=4\)
\(\Leftrightarrow\left[{}\begin{matrix}4x-1=2\\4x-1=-2\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{3}{4}\\x=-\dfrac{1}{4}\end{matrix}\right.\)
\(c,x\left(x-2018\right)-5x+2018.5=0\)
\(\Leftrightarrow x\left(x-2018\right)-5\left(x-2018\right)=0\)
\(\Leftrightarrow\left(x-2018\right)\left(x-5\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=2018\\x=5\end{matrix}\right.\)
Bài 3: bn ơi đề sai
Ta có :
\(a+b>2\Rightarrow a^2+2ab+b^2>4\)(1)
\(\left(a-b\right)^2\ge0\Rightarrow a^2-2ab+b^2\ge0\) (2)
Từ (1) và (2) suy ra : \(2\left(a^2+b^2\right)>4\)
\(\Leftrightarrow a^2+b^2>2\)(ĐPCM)