K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 8

Giúp mình câu d

d: ĐKXĐ: x>=2

Ta có: \(\left(3\sqrt{x-2}+2\right)\left(\sqrt{x-1}+x\right)=0\)

\(3\sqrt{x-2}+2\ge2>0\forall x\) thỏa mãn ĐKXĐ
nên \(\sqrt{x-1}=x\)

=>\(\begin{cases}x-1=x^2\\ x\ge0\end{cases}\Rightarrow\begin{cases}x^2-x+1=0\\ x\ge2\end{cases}\)

=>\(\begin{cases}x^2-x+\frac14+\frac34=0\\ x\ge2\end{cases}\Rightarrow\begin{cases}\left(x-\frac12\right)^2+\frac34=0\left(vôlý\right)\\ x\ge2\end{cases}\)

=>x∈∅

NV
1 tháng 9

4.

Ta có: \(S=2^1+3^{4.1+1}+4^{4.2+1}+\cdots+2024^{4.2002+1}\)

Do tính chất lũy thừa bậc 4n+1 của 1 số có tận cùng giống số đó, nên S có cùng chữ số tận cùng với tổng:

\(S_1=2+3+4+\cdots+2024=\frac{2024.2025}{2}-1=2049299\)

Vậy S có tận cùng bằng 9

a: Ta có: tia CA nằm giữa hai tia CB và CD

=>\(\hat{BCD}=\hat{BCA}+\hat{DCA}=80^0+30^0=110^0\)

ta có: \(\hat{BCD}+\hat{CBA}=110^0+70^0=180^0\)

mà hai góc này là hai góc ở vị trí trong cùng phía

nên AB//CD

b: AB//CD

=>\(\hat{BAC}=\hat{ACD}\) (hai góc so le trong)

=>\(\hat{BAC}=80^0\)

Bài 8:

Chu vi đáy là:

3,5+3,5+3+6=7+9=16(cm)

Diện tích xung quanh là: \(16\cdot11,5=184\left(\operatorname{cm}^2\right)\)

Bài 9:

Diện tích đáy là:

\(S=\frac12\cdot7\cdot24=12\cdot7=84\left(m^2\right)\)

Thể tích của khối bê tông là:

\(84\cdot22=1848\left(m^3\right)\)

Số tiền phải trả là:

\(1848\cdot2500000=4620000000\) (đồng)

Bài 2:

a: Xét ΔMAB và ΔMCD có

MA=MC

\(\hat{AMB}=\hat{CMD}\) (hai góc đối đỉnh)

MB=MD

Do đó: ΔMAB=ΔMCD

=>AB=CD

ΔMAB=ΔMCD

=>\(\hat{MAB}=\hat{MCD}\)

=>\(\hat{MCD}=90^0\)

=>CD⊥CA

b: Xét ΔDCB có CB+CD>BD

mà CD=AB

nên CB+AB>BD

=>BA+BC>2BM

c: Ta có: ΔABC vuông tại A

=>BC là cạnh huyền

=>BC là cạnh lớn nhất trong ΔABC

=>BC>AB

mà AB=CD

nên BC>CD

Xét ΔCBD có CB>CD
ma \(\hat{CDB};\hat{CBD}\) lần lượt là góc đối diện của các cạnh CB,CD

nên \(\hat{CDB}>\hat{CBD}\)

\(\hat{CDB}=\hat{ABD}\) (ΔMAB=ΔMCD)

nên \(\hat{ABD}>\hat{CBD}\)

Bài 3:

a: Xét ΔAEB vuông tại E và ΔADC vuông tại D có

AB=AC

\(\hat{EAB}\) chung

Do đó: ΔAEB=ΔADC

=>AE=AD

=>ΔAED cân tại A

b: Xét ΔADH vuông tại D và ΔAEH vuông tại E có

AH chung

AD=AE

Do đó: ΔADH=ΔAEH

=>\(\hat{DAH}=\hat{EAH}\)

=>AH là phân giác của góc DAE

c: Xét ΔABC có \(\frac{AD}{AB}=\frac{AE}{AC}\)

nên DE//BC

d: Ta có: ΔADH=ΔAEH

=>HD=HE

ΔABE=ΔACD

=>BE=CD

Ta có: BE=BH+HE

CD+CH+HD

ma BE=CD va HE=HD

nên HB=HC

=>H nằm trên đường trung trực của BC(1)

ta có: AB=AC

=>A nằm trên đường trung trực của BC(2)

Ta có: MB=MC

=>M nằm trên đường trung trực của BC(3)

Từ (1),(2),(3) suy ra A,H,M thẳng hàng

25 tháng 8

25 tháng 8

Ta có: tia CD nằm giữa hai tia CF và CB

=>\(\hat{BCF}=\hat{BCD}+\hat{FCD}=20^0+50^0=70^0\)

Ta có: \(\hat{BCF}=\hat{ABC}\left(=70^0\right)\)

mà hai góc này là hai góc ở vị trí so le trong

nên AB//CF
Ta có: \(\hat{EDC}+\hat{DCF}=130^0+50^0=180^0\)

mà hai góc này là hai góc ở vị trí trong cùng phía

nên ED//CF

Ta có: AB//CF

ED//CF

Do đó: AB//DE

20 tháng 8

cảm ơn !

a: Qua B, kẻ đường thẳng MN đi qua B và song song với Ax và Cy, với tia BM và tia Ax nằm trên cùng một nửa mặt phẳng bờ chứa tia AB

BM//Ax

=>\(\hat{xAB}+\hat{ABM}=180^0\) (hai góc trong cùng phía)

=>\(\hat{xAB}=180^0-\hat{ABM}\)

BN//Cy

=>\(\hat{yCB}+\hat{BCN}=180^0\) (hai góc trong cùng phía)

=>\(\hat{yCB}=180^0-\hat{BCN}\)

Ta có: \(\hat{MBA}+\hat{ABC}+\hat{CBN}=180^0\)

=>\(\hat{ABC}=180^0-\hat{ABM}-\hat{CBN}\)

\(=180^0-\left(180^0-\hat{xAB}\right)-\left(180^0-\hat{yCB}\right)=\hat{xAB}-180^0+\hat{yCB}\)

=>\(\hat{xAB}+\hat{yCB}-\hat{ABC}=180^0\)

b: Qua B, kẻ đường thẳng MN đi qua B và song song với Ax, với tia BM và tia Ax nằm trên cùng một nửa mặt phẳng bờ chứa tia AB

BM//Ax

=>\(\hat{xAB}+\hat{ABM}=180^0\) (hai góc trong cùng phía)

=>\(\hat{ABM}=180^0-\hat{xAB}\)

Ta có: \(\hat{BCy}+\hat{BAx}-\hat{ABC}=180^0\)

=>\(\hat{ABC}=\hat{BCy}+\hat{BAx}-180^0\)

Ta có: \(\hat{ABM}+\hat{ABC}+\hat{CBN}=180^0\)

=>\(180^0-\hat{xAB}+\hat{BCy}+\hat{BAx}-180^0+\hat{CBN}=180^0\)

=>\(\hat{BCy}+\hat{CBN}=180^0\)

mà hai góc này là hai góc ở vị trí trong cùng phía

nên Cy//BN

ta có: Cy//BN

Ax//BN

Do đó: Cy//Ax