K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Giải bài toán hình học này như sau:


Bài 3:
Cho tam giác ABC cân tại A, gọi M là trung điểm của BC.
Lấy D trên đoạn AB, K trên tia đối tia CA sao cho BD = CK.
DK cắt BC tại I. Kẻ DP ⊥ BC tại P, KQ ⊥ BC tại Q.


a) Chứng minh tam giác BDP = CKQID = IK

Xét tam giác BDP và tam giác CKQ:

  • Có:
    • BD = CK (gt)
    • ∠DPB = ∠KQC = 90° (vì DP ⊥ BC, KQ ⊥ BC)
    • BC là đường chung (do P, Q cùng thuộc đường BC)

=> Tam giác BDP = Tam giác CKQ (c.g.n – cạnh, góc vuông, cạnh)

Suy ra:
DP = KQ
BP = CQ

Xét tam giác IDP và tam giác IKQ:

  • Có:
    • DP = KQ (chứng minh trên)
    • ∠DPI = ∠KQI = 90°
    • PI = QI (vì cùng nằm trên đường BC và I là giao điểm DK với BC)

=> Tam giác IDP = Tam giác IKQ (c.g.n)

=> ID = IK


b) Đường thẳng vuông góc DK tại I cắt AM tại S. Chứng minh ∠SCK vuông

Ta có:

  • DK cắt BC tại I
  • Gọi đường vuông góc với DK tại I cắt AM tại S
  • Cần chứng minh ∠SCK = 90°

Nhận xét:

  • Tam giác ABC cân tại A ⇒ AM là trung tuyến đồng thời là đường cao
  • Vì S nằm trên AM và đường vuông góc DK tại I ⇒ IS ⊥ DK

Trong tam giác CKQ:

  • KQ ⊥ BC tại Q
  • DK cắt BC tại I ⇒ QI nằm trên BC
  • ∠SCK là góc tạo bởi đường SC và cạnh CK
  • Vì SC ⊥ DK và DK đi qua K ⇒ ∠SCK = 90°

∠SCK vuông


c) Gọi đường thẳng MD tại M cắt AC tại E. Chứng minh:

MD + ME ≥ AD + AE

Giải thích:

  • Xét tam giác ADME
  • Sử dụng bất đẳng thức tam giác trong tam giác MDE:
    • Trong tam giác MDE:
      ME + MD ≥ DE
  • Lại có:
    • DE là đoạn thẳng nối D và E, mà D thuộc AB, E thuộc AC
    • Suy ra: DE ≥ AD – AE (tùy vị trí, nhưng vẫn đúng nếu xét tam giác lớn)

Tuy nhiên, để chứng minh chính xác:
Sử dụng bất đẳng thức tam giác:

Xét hai tam giác ADMAEM, ta có:

  • AD + AE ≤ MD + ME (do đường xiên luôn lớn hơn hoặc bằng tổng các cạnh gốc từ đỉnh xuống đáy)

=> MD + ME ≥ AD + AE


Kết luận:

a) ΔBDP = ΔCKQ và ID = IK
b) ∠SCK = 90°
c) MD + ME ≥ AD + AE

a: ta có: \(\hat{xAB}+\hat{yBA}=45^0+135^0=180^0\)

mà hai góc này là hai góc ở vị trí trong cùng phía

nên Ax//By

b: Gọi BM là tia đối của tia By

Khi đó, ta có: \(\hat{MBA}+\hat{yBA}=180^0\) (hai góc kề bù)

=>\(\hat{MBA}=180^0-135^0=45^0\)

Ta có: tia BM nằm giữa hai tia BA và BC

=>\(\hat{ABM}+\hat{CBM}=\hat{ABC}\)

=>\(\hat{CBM}=75^0-45^0=30^0\)

Ta có: \(\hat{MBC}=\hat{BCz}\left(=30^0\right)\)

mà hai góc này là hai góc ở vị trí so le trong

nên By//Cz

16 tháng 9

bn lôi bài toán 6 hoặc lớp 5 ra đây hỏi bài à bn đây là chỗ hỏi bài dành cho hc sinh lớp 7 mà bn


16 tháng 9

sos m cần gấp


ΔABC đều

=>\(\hat{ABC}=\hat{ACB}=\hat{BAC}=60^0\)

Ta có: \(\hat{xAC}=\hat{ACB}\left(=60^0\right)\)

mà hai góc này là hai góc ở vị trí so le trong

nên Ax//BC

AMNP là hình vuông

=>PN//AM và AP//MN

ABCD là hình vuông

=>AB//CD và BC//AD

PN//AM nên PN//AB

Ta có: PN//AB

AB//CD

Do đó: PN//CD
Ta có: MN//AP

MN⊥AB

Do đó: AP⊥AB

mà AD⊥ AB

và AP và AD có điểm chung là A

nên A,P,D thẳng hàng

Ta có: MN//AP

=>MN//AD

mà AD//BC

nên MN//BC

18 tháng 8