Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(11x^2-15x+4=0\)
\(\Leftrightarrow11x^2-11x-4x+4=0\)
\(\Leftrightarrow11x\left(x-1\right)-4\left(x-1\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(11x-4\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-1=0\\11x-4=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=\dfrac{4}{11}\end{matrix}\right.\)
\(S=\left\{1,\dfrac{4}{11}\right\}\)
Đặt C(x)=0
\(\Leftrightarrow11x^2-15x+4=0\)
\(\Leftrightarrow11x^2-11x-4x+4=0\)
\(\Leftrightarrow11x\left(x-1\right)-4\left(x-1\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(11x-4\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-1=0\\11x-4=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\11x=4\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\x=\dfrac{4}{11}\end{matrix}\right.\)
Vậy: Nghiệm của đa thức \(C\left(x\right)=11x^2-15x+4\) là 1 và \(\dfrac{4}{11}\)
Ta có: x+y+1=0
nên x+y=-1
Ta có: \(N=x^2\left(x+y\right)-y^2\left(x+y\right)+x^2-y^2+2\left(x+y\right)+3\)
\(=\left(x+y\right)\left(x^2-y^2\right)+\left(x^2-y^2\right)+2\left(x+y\right)+3\)
\(=\left(x^2-y^2\right)\left(x+y+1\right)+2\left(x+y\right)+3\)
\(=\left(x^2-y^2\right)\cdot0+2\cdot\left(-1\right)+3\)
=-2+3=1
Đáp án:
P=\(\frac{2}{3}\)
Giải thích các bước giải:
x:y:z=5:4:3
⇒ x5x5 =y4y4 ⇒y= 4x54x5
⇒ x5x5 =z3z3 ⇒z= 3x53x5
Thay vào biểu thức ta được:
P= x+2y−3zx−2y+3zx+2y−3zx−2y+3z= x+2.4x5−33x5x−2.4x5+33x5x+2.4x5−33x5x−2.4x5+33x5 =4x56x54x56x5 =2323
Vậy P=\(\frac{2}{3}\)
# Chúc bạn học tốt!
Vì x,y,z tỉ lệ với các số 5,4,3 nên ta có : \(x:y:z=5:4:3\) hoặc \(\frac{x}{5}=\frac{y}{4}=\frac{z}{3}\)
Ta lại có : \(\frac{x}{5}=\frac{y}{4}=\frac{z}{3}=\frac{x}{5}=\frac{2y}{8}=\frac{3z}{9}\)
Đặt \(\frac{x}{5}=\frac{2y}{8}=\frac{3z}{9}=k\Rightarrow\hept{\begin{cases}x=5k\\2y=8k\\3z=9k\end{cases}}\)
\(P=\frac{x+2y-3z}{x-2y+3z}=\frac{5k+8k-9k}{5k-8k+9k}=\frac{4k}{6k}=\frac{4}{6}=\frac{2}{3}\)
Vậy \(P=\frac{2}{3}\)
a) \(\dfrac{-3}{100}>\dfrac{-50}{100}=-\dfrac{1}{2}\)
\(\dfrac{-2}{3}< \dfrac{-1,5}{3}=-\dfrac{1}{2}\)
\(\Rightarrow\dfrac{-3}{100}>\dfrac{-2}{3}\)
b) \(\dfrac{-3}{5}=\dfrac{-9}{15}\)
\(\dfrac{-2}{3}=\dfrac{-10}{15}\)
Mà: - 9 > -10
\(\Rightarrow-\dfrac{9}{15}>\dfrac{-10}{15}\)
hay `-3/5>-2/3`
c) \(\dfrac{-5}{4}< \dfrac{-2}{4}=-\dfrac{1}{2}\)
\(-\dfrac{3}{8}>\dfrac{-4}{8}=-\dfrac{1}{2}\)
\(\Rightarrow-\dfrac{5}{4}< \dfrac{-3}{8}\)
d) \(-\dfrac{2}{3}=\dfrac{1}{3}-1\)
\(-\dfrac{3}{4}=\dfrac{1}{4}-1\)
Vì: `1/3>1/4`
`=>1/3-1>1/4-1`
Hay `-2/3>-3/4`
a: \(\dfrac{-3}{100}=\dfrac{-3\cdot3}{100\cdot3}=\dfrac{-9}{300};\dfrac{2}{-3}=\dfrac{-2}{3}=\dfrac{-2\cdot100}{3\cdot100}=\dfrac{-200}{300}\)
mà -9>-200
nên \(\dfrac{-3}{100}>\dfrac{-2}{3}\)
b: \(\dfrac{-3}{5}=\dfrac{-3\cdot3}{5\cdot3}=\dfrac{-9}{15};\dfrac{2}{-3}=\dfrac{-2}{3}=\dfrac{-2\cdot5}{3\cdot5}=\dfrac{-10}{15}\)
mà -9>-10
nên \(\dfrac{-3}{5}>\dfrac{2}{-3}\)
c: \(\dfrac{-5}{4}=\dfrac{-5\cdot2}{4\cdot2}=\dfrac{-10}{8};\dfrac{-3}{8}=\dfrac{-3}{8}\)
mà -10<-3
nên \(-\dfrac{5}{4}< -\dfrac{3}{8}\)
d: \(\dfrac{-2}{3}=\dfrac{-2\cdot4}{3\cdot4}=\dfrac{-8}{12};\dfrac{3}{-4}=\dfrac{-3}{4}=\dfrac{-3\cdot3}{4\cdot3}=\dfrac{-9}{12}\)
mà -8>-9
nên \(-\dfrac{2}{3}>\dfrac{3}{-4}\)
e: \(\dfrac{267}{-268}=\dfrac{-267}{268}>-1;-1=\dfrac{-1343}{1343}>\dfrac{-1347}{1343}\)
Do đó: \(\dfrac{267}{-268}>\dfrac{-1347}{1343}\)
f: \(\dfrac{2022\cdot2023-1}{2022\cdot2023}=1-\dfrac{1}{2022\cdot2023}\)
\(\dfrac{2023\cdot2024-1}{2023\cdot2024}=1-\dfrac{1}{2023\cdot2024}\)
Ta có: 2022<2024
=>\(2022\cdot2023< 2023\cdot2024\)
=>\(\dfrac{1}{2022\cdot2023}>\dfrac{1}{2023\cdot2024}\)
=>\(-\dfrac{1}{2022\cdot2023}< -\dfrac{1}{2023\cdot2024}\)
=>\(\dfrac{-1}{2022\cdot2023}+1< \dfrac{-1}{2023\cdot2024}+1\)
=>\(\dfrac{2022\cdot2023-1}{2022\cdot2023}< \dfrac{2023\cdot2024-1}{2023\cdot2024}\)
g: \(\dfrac{2022\cdot2023}{2022\cdot2023+1}=1-\dfrac{1}{2022\cdot2023+1}\)
\(\dfrac{2023\cdot2024}{2023\cdot2024+1}=1-\dfrac{1}{2023\cdot2024+1}\)
Vì \(2022\cdot2023+1< 2023\cdot2024+1\)
nên \(\dfrac{1}{2022\cdot2023+1}>\dfrac{1}{2023\cdot2024+1}\)
=>\(\dfrac{-1}{2022\cdot2023+1}< \dfrac{-1}{2023\cdot2024+1}\)
=>\(\dfrac{-1}{2022\cdot2023+1}+1< \dfrac{-1}{2023\cdot2024}+1\)
=>\(\dfrac{2022\cdot2023}{2022\cdot2023+1}< \dfrac{2023\cdot2024}{2023\cdot2024+1}\)