">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Gọi số sản phẩm đội đó phải hoàn thành theo kế hoạch là x(sản phẩm)

(Điều kiện: \(x\in Z^+\))

Số sản phẩm thực tế đội đó làm được là x+20(sản phẩm)

Thời gian dự kiến hoàn thành là \(\dfrac{x}{20}\left(ngày\right)\)

Thời gian thực tế hoàn thành là \(\dfrac{x+20}{30}\left(ngày\right)\)

Thực tế hoàn thành trước kế hoạch 2 ngày nên ta có:

\(\dfrac{x}{20}-\dfrac{x+20}{30}=2\)

=>\(\dfrac{3x-2\left(x+20\right)}{60}=2\)

=>x-40=120

=>x=160(nhận)

Vậy: Theo kế hoạch, đội phải hoàn thành 160 sản phẩm

23 tháng 1 2024

a) Áp dụng định lý Py-ta-go cho tam giác ABC vuông tại A ta có:

\(BC^2=AB^2+AC^2\) 

\(\Rightarrow BC=\sqrt{AB^2+AC^2}\)

\(\Rightarrow BC=\sqrt{10^2+20^2}=10\sqrt{5}\left(cm\right)\) 

Áp dụng định lý Py-ta-go cho tam giác ABM vuông tại A ta có:

\(BM^2=AB^2+AM^2\)

\(\Rightarrow BM=\sqrt{AB^2+AM^2}\)

\(\Rightarrow BM=\sqrt{10^2+5^2}=5\sqrt{5}\left(cm\right)\)

b) Ta có: 

\(\dfrac{AM}{AB}=\dfrac{1}{2}\)

\(\dfrac{BM}{BC}=\dfrac{1}{2}\)

\(\Rightarrow\dfrac{AM}{AB}=\dfrac{MB}{BC}=\dfrac{1}{2}\) 

Xét hai tam giác ABC và AMB có: 

\(\widehat{BAC}\) chung 

\(\dfrac{AM}{AB}=\dfrac{MB}{BC}=\dfrac{1}{2}\)

\(\Rightarrow\Delta ABC\sim\Delta AMB\left(c.g.c\right)\)

23 tháng 1 2024

a) Xét hai tam giác ABE và ACD có:

\(\widehat{ACD}=\widehat{ABE}\left(gt\right)\)     

\(\widehat{BAC}\) chung 

\(\Rightarrow\Delta ABE\sim\Delta ACD\left(g.g\right)\) 

b) Ta có: \(\Delta ABE\sim\Delta ACD\left(cmt\right)\)

\(\Rightarrow\dfrac{AB}{AC}=\dfrac{AE}{AD}\) 

16 tháng 1 2024

a) 

b) Phương trình hoành độ giao điểm của hai đường thẳng là:

\(x-1=2x\)

\(\Leftrightarrow2x-x=-1\)

\(\Leftrightarrow x=-1\)

Thay x = - 1 vào y = 2x ta có: \(y=2\cdot-1=-2\)

Vậy tọa độ giao điểm của 2 đường thẳng là \(\left(-1;-2\right)\)

16 tháng 1 2024

a) Vào năm 2000 diện tích đất nông nghiệp ở nước ta là:

Thay t = 0 vào \(S=0,12t+8,97\) (vì t được tính theo số năm kể từ năm 2000) ta có: 

\(S=0,12\cdot0+8,97=8,97\left(tr.ha\right)\) 

b) Diện tích đất nông nghiệp ở nước ra đạt 10,05 triệu hec-ta ta thay \(S=10,05\) ta có:

\(10,05=0,12t+8,97\)

\(\Leftrightarrow0,12t=10,05-8,97\)

\(\Leftrightarrow0,12t=1,08\)

\(\Leftrightarrow t=1,08:0,12\)

\(\Leftrightarrow t=9\) 

Vậy năm nước ta đạt 10,05 triệu héc-ta là: \(2000+9=2009\)

16 tháng 1 2024

a) Ta có: 

\(DF//AC\left(gt\right)\) (1)

\(DE//AB\left(gt\right)\) (2) 

Từ (1) và (2) ⇒ AEDF là hình bình hành (3) 

Mà AD là phân giác của góc FAE (4)

Từ (3) và (4) ⇒ AEDF là hình thoi 

b) Xét hai tam giác CDE và CBA có:

\(\widehat{ACB}\) chung 

\(\widehat{CED}=\widehat{CAB}\) (đồng vị vì DE//AB) 

\(\Rightarrow\Delta CDE\sim\Delta CBA\left(g.g\right)\)

\(\Rightarrow\dfrac{DE}{AB}=\dfrac{CE}{AC}\Rightarrow DE\cdot AC=CE\cdot AB\)

Do: AEDF là hình thoi nên: DE = AE = AF 

\(\Rightarrow AF\cdot AC=\left(AC-AE\right)\cdot AB\) 

\(\Rightarrow\left(AB-BF\right)\cdot AC=AC\cdot AB-AE\cdot AB\)

\(\Rightarrow AB\cdot AC-BF\cdot AC=AC\cdot AB-AE\cdot AB\)

\(\Rightarrow BF\cdot AC=AE\cdot AB\) 

\(\Rightarrow AF\cdot AB=BF\cdot AC\left(đpcm\right)\) 

2 tháng 2 2024

Ta có: DE//AC (cùng vuông góc với AB) 

Áp dụng định lý Ta-lét ta có:

\(\dfrac{BD}{AD}=\dfrac{BE}{CE}\Rightarrow\dfrac{BD}{AD}=\dfrac{BE}{BC-BE}\Rightarrow\dfrac{6}{x}=\dfrac{3x}{13,5-3x}\)

\(\Leftrightarrow6\left(13,5-3x\right)=x\cdot3x\)

\(\Leftrightarrow81-18x=3x^2\)

\(\Leftrightarrow27-6x=x^2\)

\(\Leftrightarrow x^2+6x-27=0\)

\(\Leftrightarrow x^2-3x+9x-27=0\)

\(\Leftrightarrow x\left(x-3\right)+9\left(x-3\right)=0\)

\(\Leftrightarrow\left(x-3\right)\left(x+9\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=3\left(tm\right)\\x=-9\left(ktm\right)\end{matrix}\right.\)

Vậy: `x=3` 

13 tháng 1 2024

Hai hình đồng dạng em nhé!