Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(11x^2-15x+4=0\)
\(\Leftrightarrow11x^2-11x-4x+4=0\)
\(\Leftrightarrow11x\left(x-1\right)-4\left(x-1\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(11x-4\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-1=0\\11x-4=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=\dfrac{4}{11}\end{matrix}\right.\)
\(S=\left\{1,\dfrac{4}{11}\right\}\)
Đặt C(x)=0
\(\Leftrightarrow11x^2-15x+4=0\)
\(\Leftrightarrow11x^2-11x-4x+4=0\)
\(\Leftrightarrow11x\left(x-1\right)-4\left(x-1\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(11x-4\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-1=0\\11x-4=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\11x=4\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\x=\dfrac{4}{11}\end{matrix}\right.\)
Vậy: Nghiệm của đa thức \(C\left(x\right)=11x^2-15x+4\) là 1 và \(\dfrac{4}{11}\)
Ta có: x+y+1=0
nên x+y=-1
Ta có: \(N=x^2\left(x+y\right)-y^2\left(x+y\right)+x^2-y^2+2\left(x+y\right)+3\)
\(=\left(x+y\right)\left(x^2-y^2\right)+\left(x^2-y^2\right)+2\left(x+y\right)+3\)
\(=\left(x^2-y^2\right)\left(x+y+1\right)+2\left(x+y\right)+3\)
\(=\left(x^2-y^2\right)\cdot0+2\cdot\left(-1\right)+3\)
=-2+3=1
Đáp án:
P=\(\frac{2}{3}\)
Giải thích các bước giải:
x:y:z=5:4:3
⇒ x5x5 =y4y4 ⇒y= 4x54x5
⇒ x5x5 =z3z3 ⇒z= 3x53x5
Thay vào biểu thức ta được:
P= x+2y−3zx−2y+3zx+2y−3zx−2y+3z= x+2.4x5−33x5x−2.4x5+33x5x+2.4x5−33x5x−2.4x5+33x5 =4x56x54x56x5 =2323
Vậy P=\(\frac{2}{3}\)
# Chúc bạn học tốt!
Vì x,y,z tỉ lệ với các số 5,4,3 nên ta có : \(x:y:z=5:4:3\) hoặc \(\frac{x}{5}=\frac{y}{4}=\frac{z}{3}\)
Ta lại có : \(\frac{x}{5}=\frac{y}{4}=\frac{z}{3}=\frac{x}{5}=\frac{2y}{8}=\frac{3z}{9}\)
Đặt \(\frac{x}{5}=\frac{2y}{8}=\frac{3z}{9}=k\Rightarrow\hept{\begin{cases}x=5k\\2y=8k\\3z=9k\end{cases}}\)
\(P=\frac{x+2y-3z}{x-2y+3z}=\frac{5k+8k-9k}{5k-8k+9k}=\frac{4k}{6k}=\frac{4}{6}=\frac{2}{3}\)
Vậy \(P=\frac{2}{3}\)
a) \(x^2-\dfrac{4}{3}x=0\)
\(\Rightarrow x\left(x-\dfrac{4}{3}\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x=0\\x-\dfrac{4}{3}=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=0\\x=\dfrac{4}{3}\end{matrix}\right.\)
b) \(\left|3x+7\right|=5\)
\(\Rightarrow\left[{}\begin{matrix}3x+7=5\\3x+7=-5\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}3x=-2\\3x=-12\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=-\dfrac{2}{3}\\x=-4\end{matrix}\right.\)
c) \(2\left|7-2x\right|=6\)
\(\Rightarrow\left|7-2x\right|=3\)
\(\Rightarrow\left[{}\begin{matrix}7-2x=3\\7-2x=-3\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}2x=4\\2x=10\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=2\\x=5\end{matrix}\right.\)
d) \(5\left(x+2\right)+2\left(x-1\right)=10\)
\(\Rightarrow5x+10+2x-2=10\)
\(\Rightarrow5x+2x+8=10\)
\(\Rightarrow7x=2\)
\(\Rightarrow x=\dfrac{2}{7}\)
e) \(6\left(x-3\right)-4\left(x+2\right)=15\)
\(\Rightarrow6x-18-4x-8=15\)
\(\Rightarrow6x-4x-18-8=15\)
\(\Rightarrow2x-26=15\)
\(\Rightarrow2x=41\)
\(\Rightarrow x=\dfrac{41}{2}\)
g) \(\left(12-2x\right)^2=\dfrac{4}{9}\)
\(\Rightarrow\left[{}\begin{matrix}12-2x=\dfrac{2}{3}\\12-2x=-\dfrac{2}{3}\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}12x=12-\dfrac{2}{3}\\12x=12+\dfrac{2}{3}\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}12x=\dfrac{34}{3}\\12x=\dfrac{38}{3}\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=\dfrac{34}{3}.\dfrac{1}{12}\\x=\dfrac{38}{3}.\dfrac{1}{12}\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=\dfrac{17}{18}\\x=\dfrac{19}{18}\end{matrix}\right.\)