Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(11x^2-15x+4=0\)
\(\Leftrightarrow11x^2-11x-4x+4=0\)
\(\Leftrightarrow11x\left(x-1\right)-4\left(x-1\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(11x-4\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-1=0\\11x-4=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=\dfrac{4}{11}\end{matrix}\right.\)
\(S=\left\{1,\dfrac{4}{11}\right\}\)
Đặt C(x)=0
\(\Leftrightarrow11x^2-15x+4=0\)
\(\Leftrightarrow11x^2-11x-4x+4=0\)
\(\Leftrightarrow11x\left(x-1\right)-4\left(x-1\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(11x-4\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-1=0\\11x-4=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\11x=4\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\x=\dfrac{4}{11}\end{matrix}\right.\)
Vậy: Nghiệm của đa thức \(C\left(x\right)=11x^2-15x+4\) là 1 và \(\dfrac{4}{11}\)
Ta có: x+y+1=0
nên x+y=-1
Ta có: \(N=x^2\left(x+y\right)-y^2\left(x+y\right)+x^2-y^2+2\left(x+y\right)+3\)
\(=\left(x+y\right)\left(x^2-y^2\right)+\left(x^2-y^2\right)+2\left(x+y\right)+3\)
\(=\left(x^2-y^2\right)\left(x+y+1\right)+2\left(x+y\right)+3\)
\(=\left(x^2-y^2\right)\cdot0+2\cdot\left(-1\right)+3\)
=-2+3=1
Đáp án:
P=\(\frac{2}{3}\)
Giải thích các bước giải:
x:y:z=5:4:3
⇒ x5x5 =y4y4 ⇒y= 4x54x5
⇒ x5x5 =z3z3 ⇒z= 3x53x5
Thay vào biểu thức ta được:
P= x+2y−3zx−2y+3zx+2y−3zx−2y+3z= x+2.4x5−33x5x−2.4x5+33x5x+2.4x5−33x5x−2.4x5+33x5 =4x56x54x56x5 =2323
Vậy P=\(\frac{2}{3}\)
# Chúc bạn học tốt!
Vì x,y,z tỉ lệ với các số 5,4,3 nên ta có : \(x:y:z=5:4:3\) hoặc \(\frac{x}{5}=\frac{y}{4}=\frac{z}{3}\)
Ta lại có : \(\frac{x}{5}=\frac{y}{4}=\frac{z}{3}=\frac{x}{5}=\frac{2y}{8}=\frac{3z}{9}\)
Đặt \(\frac{x}{5}=\frac{2y}{8}=\frac{3z}{9}=k\Rightarrow\hept{\begin{cases}x=5k\\2y=8k\\3z=9k\end{cases}}\)
\(P=\frac{x+2y-3z}{x-2y+3z}=\frac{5k+8k-9k}{5k-8k+9k}=\frac{4k}{6k}=\frac{4}{6}=\frac{2}{3}\)
Vậy \(P=\frac{2}{3}\)
Bài 2
S = 6 + 6² + 6³ + 6⁴ + ... + 6⁹⁹
6S = 6² + 6³ + 6⁴ + 6⁵ + 6⁹⁹
5S = 6S - S = (6² + 6³ + 6⁴ + 6⁵ + ... + 6¹⁰⁰) - (6 + 6² + 6³ + 6⁴ + ... + 6⁹⁹)
= 6¹⁰⁰ - 6
S = (6¹⁰⁰ - 6)/5
----------------
S = 1/3 + 1/3² + 1/3⁴ + 1/3⁶ + ... + 1/3⁹⁸ + 1/3¹⁰⁰
S/9 = 1/3³ + 1/3⁴ + 1/3⁶ + 1/3⁸ + ... + 1/3¹⁰⁰ + 1/3¹⁰²
-8S/9 = S/9 - S
= (1/3³ + 1/3⁴ + 1/3⁶ + 1/3⁸ + ... + 1/3¹⁰⁰ + 1/3¹⁰²) - (1/3 + 1/3² + 1/3⁴ + 1/3⁶ + ... + 1/3¹⁰⁰)
= 1/3¹⁰² + 1/3³ - 1/3 - 1/3²
= 1/3¹⁰² - 11/27
S = (1/3¹⁰² - 11/27)/(-8/9)
= -1/(8.3¹⁰⁰) + 11/8
--------------------
S = 1 + 4 + 4² + 4³ + ... + 4¹⁰⁰⁰
4S = 4 + 4² + 4³ + 4⁴ + ... + 4¹⁰⁰¹
3S = 4S - S
= (4 + 4² + 4³ + 4⁴ + ... + 4¹⁰⁰¹) - (1 + 4 + 4² + 4³ + ... + 4¹⁰⁰⁰)
= 4¹⁰⁰¹ - 1
S = (4¹⁰⁰¹ - 1)/3
--------------------
S = 1 + 1/2 + 1/2² + 1/2⁴ + ... + 1/2⁹⁸ + 1/2¹⁰⁰
S/4 = 1/2² + 1/2³ + 1/2⁴ + 1/2⁶ + ... + 1/2¹⁰⁰ + 1/2¹⁰²
3S/4 = S - S/4
= (1 + 1/2 + 1/2² + 1/2⁴ + ... + 1/2⁹⁸ + 1/2¹⁰⁰) - (1/2² + 1/2³ + 1/2⁴ + 1/2⁶ + ... + 1/2¹⁰⁰ + 1/2¹⁰²)
= 1 + 1/2 - 1/2³ - 1/2¹⁰²
= 11/8 - 1/2¹⁰²
S = (11/8 - 1/2¹⁰²) : 3/4
= 33/2 - 1/(3.2¹⁰⁰)
Bài 3
a) A = 5⁵ - 5⁴ + 5³
= 5³.(5² - 5 + 1)
= 5³.21 ⋮ 7 (vì 21 ⋮ 7)
Vậy A ⋮ 7
b) B = 10⁶ - 5⁷
= 2⁶.5⁶ - 5⁷
= 5⁶.(2⁶ - 5)
= 5⁶.(64 - 5)
= 5⁶.59 ⋮ 59
Vậy B ⋮ 59
c) C = 81⁷ - 27⁹ - 9¹³
= (3⁴)⁷ - (3³)⁹ - (3²)¹³
= 3²⁸ - 3²⁷ - 3²⁶
= 3²⁴.(3⁴ - 3³ - 3²)
= 3²⁴.(81 - 27 - 9)
= 3²⁴.45 ⋮ 45
Vậy C ⋮ 45
d) D = 10⁹ + 10⁸ + 10⁷
= 10⁷.(10² + 10 + 1)
= 10⁷.(100 + 11)
= 10⁷.111
= 2⁷.5⁷.111
= 2⁶.5⁷.2.111
= 2⁶.5⁷.222 ⋮ 222
D = 2⁷.5⁷.111
= 2⁷.5⁶.5.111
= 2⁷.5⁶.555 ⋮ 555
Vậy D ⋮ 222 và D ⋮ 555
e) E = 16⁵ + 2¹⁵
= (2⁴)⁵ + 2¹⁵
= 2²⁰ + 2¹⁵
= 2¹⁵.(2⁵ + 1)
= 2¹⁵.(32 + 1)
= 2¹⁵.33 ⋮ 33
Vậy E ⋮ 33