K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 5 2015

C = [(x -2)4 - \(\frac{1}{2}\).(x - 2)2 ] +  [- \(\frac{1}{2}\).(x - 2)2 + \(\frac{1}{4}\) ] + \(\frac{35}{4}\)

= (x-2)2. [(x - 2)2 - \(\frac{1}{2}\) ] - \(\frac{1}{2}\). [(x - 2)2 - \(\frac{1}{2}\)] + \(\frac{35}{4}\)

=   [(x - 2)2 - \(\frac{1}{2}\) ] .  [(x - 2)2 - \(\frac{1}{2}\) ]  + \(\frac{35}{4}\) =   [(x - 2)2 - \(\frac{1}{2}\) ]2  +  \(\frac{35}{4}\) \(\ge\) 0 +  \(\frac{35}{4}\)

=> Min C =  \(\frac{35}{4}\) khi (x - 2)2 - \(\frac{1}{2}\) = 0 <=> (x - 2)2  =  \(\frac{1}{2}\) <=> x -2 = \(\frac{1}{\sqrt{2}}\) hoặc x - 2 = - \(\frac{1}{\sqrt{2}}\)

<=> x = 2 + \(\frac{1}{\sqrt{2}}\) hoặc x = 2 - \(\frac{1}{\sqrt{2}}\)

19 tháng 10 2023

giúp tui vs tui cảm ơn

19 tháng 10 2023

\(2\sqrt x+1\sqrt x+3\\=3\sqrt x+3\) (đk: \(x\ge0\))

Ta thấy: \(\sqrt{x}\ge0\forall x\ge0\)

\(\Leftrightarrow3\sqrt{x}\ge0\forall x\ge0\)

\(\Leftrightarrow3\sqrt{x}+3\ge3\forall x\ge0\)

Dấu \("="\) xảy ra \(\Leftrightarrow3\sqrt{x}=0\Leftrightarrow x=0\left(tm\right)\)

AH
Akai Haruma
Giáo viên
19 tháng 10 2024

$x,y$ có bổ sung điều kiện gì không bạn?

5 tháng 4 2020

a) \(A=\left(x-1\right)^2\ge0\)

Dấu " = " xảy ra :

\(\Leftrightarrow x-1=0\)

\(\Leftrightarrow x=1\)

Vậy \(Min_A=0\Leftrightarrow x=1\)

b) Ta thấy : \(\left(x^2-9\right)^2\ge0\)

                   \(\left|y-2\right|\ge0\)

\(\Leftrightarrow B=\left(x^2-9\right)^2+\left|y-2\right|-1\ge-1\)

Dấu " = " xảy ra :

\(\Leftrightarrow\hept{\begin{cases}x^2-9=0\\y-2=0\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}x\in\left\{3;-3\right\}\\y=2\end{cases}}\)

Vậy \(Min_B=-1\Leftrightarrow\left(x;y\right)\in\left\{\left(3;2\right);\left(-3;2\right)\right\}\)

c) Ta thấy : \(x^4\ge0\)

                   \(x^2\ge0\)

\(\Leftrightarrow C=x^4+3x^2+2\ge2\)

Dấu " = " xảy ra ;

\(\Leftrightarrow x=0\)

Vậy \(Min_C=2\Leftrightarrow x=0\)

d) \(D=x^2+4x-100\)

\(\Leftrightarrow D=x^2+4x+4-104\)

\(\Leftrightarrow D=\left(x+2\right)^2-104\ge-104\)

Dấu " = " xảy ra :

\(\Leftrightarrow x+2=0\)

\(\Leftrightarrow x=-2\)

Vậy \(Min_D=-104\Leftrightarrow x=-2\)

23 tháng 10 2023

a) Ta thấy: \(\left|\dfrac{2}{5}-x\right|\ge0\forall x\)

\(\Rightarrow Q=\dfrac{9}{2}+\left|\dfrac{2}{5}-x\right|\ge\dfrac{9}{2}\forall x\)

Dấu \("="\) xảy ra khi: \(\left|\dfrac{2}{5}-x\right|=0\Leftrightarrow\dfrac{2}{5}-x=0\Leftrightarrow x=\dfrac{2}{5}\)

Vậy \(Min_Q=\dfrac{9}{2}\) khi \(x=\dfrac{2}{5}\).

\(---\)

b) Ta thấy: \(\left|x+\dfrac{2}{3}\right|\ge0\forall x\)

\(\Rightarrow M=\left|x+\dfrac{2}{3}\right|-\dfrac{3}{5}\ge-\dfrac{3}{5}\forall x\)

Dấu \("="\) xảy ra khi: \(\left|x+\dfrac{2}{3}\right|=0\Leftrightarrow x+\dfrac{2}{3}=0\Leftrightarrow x=-\dfrac{2}{3}\)

Vậy \(Min_M=-\dfrac{3}{5}\) khi \(x=-\dfrac{2}{3}\).

\(---\)

c) Ta thấy: \(\left|\dfrac{7}{4}-x\right|\ge0\forall x\)

\(\Rightarrow-\left|\dfrac{7}{4}-x\right|\le0\forall x\)

\(\Rightarrow N=-\left|\dfrac{7}{4}-x\right|-8\le-8\forall x\)

Dấu \("="\) xảy ra khi: \(\left|\dfrac{7}{4}-x\right|=0\Leftrightarrow\dfrac{7}{4}-x=0\Leftrightarrow x=\dfrac{7}{4}\)

Vậy \(Max_N=-8\) khi \(x=\dfrac{7}{4}\).

23 tháng 10 2023

a) Ta có: \(\left|\dfrac{2}{5}-x\right|\ge0\forall x\)

\(\Rightarrow Q=\dfrac{9}{2}+\left|\dfrac{2}{5}-x\right|\ge\dfrac{9}{2}\forall x\)

Dấu "=" xảy ra khi:

\(\dfrac{2}{5}-x=0\)

\(\Rightarrow x=\dfrac{2}{5}\)

Vậy: ... 

b) Ta có: \(\left|x+\dfrac{2}{3}\right|\ge0\forall x\)

\(\Rightarrow M=\left|x+\dfrac{2}{3}\right|-\dfrac{3}{5}\ge-\dfrac{3}{5}\)

Dấu "=" xảy ra:

\(x+\dfrac{2}{3}=0\)

\(\Rightarrow x=-\dfrac{2}{3}\)

Vậy: ...

c) Ta có: \(-\left|\dfrac{7}{4}-x\right|\le0\forall x\)

\(\Rightarrow N=-\left|\dfrac{7}{4}-x\right|-8\le-8\)

Dấu "=" xảy ra:

\(\dfrac{7}{4}-x=0\)

\(\Rightarrow x=\dfrac{7}{4}\)

Vậy: ...

18 tháng 11 2018

\(A=x^2-6x+10\)

\(\Leftrightarrow A=x^2-2\cdot x\cdot3+3^2-9+10\)

\(\Leftrightarrow A=\left(x-3\right)^2+1\ge1\)     \(\forall x\in z\)

\(\Leftrightarrow A_{min}=1khix=3\)

\(B=3x^2-12x+1\)

\(\Leftrightarrow B=\left(\sqrt{3}x\right)^2-2\cdot\sqrt{3}x\cdot2\sqrt{3}+\left(2\sqrt{3}\right)^2-12+1\)

\(\Leftrightarrow B=\left(\sqrt{3}x-2\sqrt{3}\right)^2-11\ge-11\)    \(\forall x\in z\)

\(\Leftrightarrow B_{min}=-11khix=2\)

8 tháng 5 2019

\(M=\sqrt{x^2-4x+4}+2014\sqrt{x^2-6x+9}+\sqrt{x^2-10x+25}\)

\(M=\left|x-2\right|+2014\left|x-3\right|+\left|x-5\right|\)

\(M=\left|x-2\right|+\left|5-x\right|+2014\left|x-3\right|\)

\(M\ge\left|x-2+5-x\right|+2014\left|x-3\right|=3+2014\left|x-3\right|\ge3\)

\("="\Leftrightarrow x=3\)