K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
19 tháng 10 2024

$x,y$ có bổ sung điều kiện gì không bạn?

9 tháng 6 2016

ta có x + y + xy = 15 => x + y = 15 - xy => \(\left(x+y\right)^2=\left(15-xy\right)^2\)

\(P=x^2+y^2=\left(x+y\right)^2-2xy=\left(15-xy\right)^2-2xy\)

     \(=\left(xy\right)^2-32xy+225=\left(xy\right)^2-32xy+256-31\)

      \(=\left(xy-16\right)^2-31\ge-31\)

9 tháng 6 2016

Xin lỗi hôm qua mình giải sải. giờ mình xin đính chính lại nhé 

F=x3+y3+2xy=(x+y)3-3xy(x+y)+2xy

=(x+y)3-xy(3x+3y-2)

=20073-xy[3.2007-2]

làm tiếp đi 

chú ý \(xy\le\frac{\left(x+y\right)^2}{4}\)(bđt AM-GM)

21 tháng 10 2019

Đầu tiên tìm GTLN, GTNN của xy.

Không mất tính tổng quát giả sử:

\(x\ge y+1\)

\(\Leftrightarrow x-y-1\ge0\)

\(\Leftrightarrow x-y-1+xy\ge xy\)

\(\Leftrightarrow\left(x-1\right)\left(y+1\right)\ge xy\)

Từ đây ta suy được:

\(2006.1< 2005.2< 2004.3< ...< 1003.1004\)

Vậy \(min_{xy}=2006.1;max_{xy}=1003.1004\)

Ta lại có:

\(F=\left(x+y\right)^3-xy\left(3x+3y-2\right)\)

Thế vô là xong

11 tháng 3 2020

\(A=\frac{1}{9}\left(3x-2y-2\right)^2+\frac{5}{9}\left(y-2\right)^2+8\ge8\)

11 tháng 3 2020

Can downvote-er this answer explain us, why you do that? If you don't understand something, I ready to help you!

29 tháng 12 2019

\(Q=\frac{1}{x^2+y^2}+\frac{2}{xy}+4xy+2016=\frac{1}{x^2+y^2}+\frac{1}{2xy}+\frac{1}{4xy}+4xy+\frac{5}{4xy}+2016\)

Áp dụng bất đẳng thức \(\frac{1}{a}+\frac{1}{b}\ge\frac{4}{a+b}\). Dấu "=" khi a=b (bạn tự chứng minh)

\(\frac{1}{x^2+y^2}+\frac{1}{2xy}\ge\frac{4}{\left(x+y\right)^2}=4\)

Vì x>0, y>0 nên xy>0

Áp dụng bất đẳng thức Cô si cho 2 số dương

\(\frac{1}{4xy}+4xy\ge2\sqrt{\frac{1}{4xy}.4xy}=2\)

Ta có: \(1=x+y\ge2\sqrt{xy}\Leftrightarrow\left(x+y\right)^2\ge4xy\Leftrightarrow xy\le\frac{\left(x+y\right)^2}{4}=\frac{1}{4}\Rightarrow\frac{5}{4xy}\ge5\)

Dấu "=" khi \(\hept{\begin{cases}x^2+y^2=2xy\\\frac{1}{4xy}=4xy\\x=y\end{cases}\Rightarrow x=y=\frac{1}{2}}\)

\(\Rightarrow Q\ge4+2+5+2016=2027\)

Vậy \(minQ=2027\)khi \(x=y=\frac{1}{2}\)