K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Bài 3:

a: Ta có: \(\hat{FAH}+\hat{FAB}+\hat{HAD}+\hat{BAD}=360^0\)

=>\(\hat{FAH}+\hat{DAB}=360^0-90^0-90^0=180^0\)

\(\hat{DAB}+\hat{ADC}=180^0\) (ABCD là hình bình hành)

nên \(\hat{FAH}=\hat{CDA}\)

Ta có: ABEF là hình vuông

=>AB=BE=FE=AF

mà AB=CD

nên AB=CD=BE=FE=AF

Ta có: ADGH là hình vuông

=>AD=DG=GH=HA

mà AD=BC

nên BC=AD=DG=GH=HA

Xét ΔFAH và ΔCDA có

FA=CD

\(\hat{FAH}=\hat{CDA}\)

AH=AD

Do đó: ΔFAH=ΔCDA

=>FH=CA

ΔFAH=ΔCDA

=>\(\hat{FHA}=\hat{CAD}\)

Gọi K là giao điểm của AC và FH

Ta có: \(\hat{KAH}+\hat{HAD}+\hat{DAC}=180^0\)

=>\(\hat{KAH}+\hat{DAC}=180^0-90^0=90^0\)

=>\(\hat{KAH}+\hat{FHA}=90^0\)

=>ΔAKH vuông tại K

=>AK⊥FH tại K

=>CA⊥FH tại K

b: Ta có: \(\hat{CDG}=\hat{CDA}+\hat{ADG}=\hat{CDA}+90^0\)

\(\hat{EBC}=\hat{EBA}+\hat{CBA}=90^0+\hat{CBA}\)

\(\hat{CDA}=\hat{CBA}\) (ABCD là hình bình hành)

nên \(\hat{CDG}=\hat{EBC}\)

Xét ΔCDG và ΔEBC có

CD=EB

\(\hat{CDG}=\hat{EBC}\)

DG=BC

Do đó: ΔCDG=ΔEBC

=>CG=EC và \(\hat{DCG}=\hat{BEC};\hat{DGC}=\hat{BCE}\)

\(\hat{GCE}=\hat{DCB}-\hat{DCG}-\hat{BCE}\)

\(=\hat{DCB}-\hat{BEC}-\hat{BCE}=180^0-\hat{ADC}-\left(180^0-\hat{EBC}\right)=\hat{EBC}-\hat{ADC}\)

\(=\hat{EBA}+\hat{CBA}-\hat{ADC}=\hat{EBA}=90^0\)

=>ΔGCE vuông cân tại C

Bài 2:

a: BO là phân giác của góc ABD

=>\(\hat{ABO}=\hat{DBO}=\frac12\cdot\hat{ABD}\) (1)

CO là phân giác của góc ACE

=>\(\hat{ACO}=\hat{OCE}=\frac12\cdot\hat{ACE}\left(2\right)\)

Ta có: \(\hat{ABD}+\hat{BAC}=90^0\) (ΔADB vuông tại D)

\(\hat{ACE}+\hat{BAC}=90^0\) (ΔAEC vuông tại E)

Do đó: \(\hat{ABD}=\hat{ACE}\left(3\right)\)

Từ (1),(2) suy ra \(\hat{ABO}=\hat{DBO}=\hat{ACO}=\hat{OCE}\)

Ta có: \(\hat{OBC}+\hat{OCB}\)

\(=\hat{OBD}+\hat{DBC}+\hat{OCE}+\hat{ECB}\)

\(=2\cdot\hat{OBD}+\hat{DBC}+\hat{ECB}=\hat{ABD}+90^0-\hat{ABC}+90^0-\hat{ACB}\)

\(=180^0-\hat{ABC}-\hat{ACB}+\hat{ABD}=\hat{BAC}+\hat{ABD}=90^0\)

=>ΔBOC vuông tại O

b: Xét ΔBMH có

BO là đường cao

BO là đường phân giác

Do đó: ΔBMH cân tại B

mà BO là đường cao

nên O là trung điểm của MH

Xét ΔCNK có

CO là đường cao

CO là đường phân giác

Do đó: ΔCNK cân tại C

mà CO là đường cao

nên O là trung điểm của NK

Xét tứ giác MNHK có

O là trung điểm chung của MH và NK

=>MNHK là hình bình hành

Hình bình hành MNHK có MH⊥NK

nên MNHK là hình thoi

Bài 3:

a: Ta có: \(\hat{F A H} + \hat{F A B} + \hat{H A D} + \hat{B A D} = 36 0^{0}\)

=>\(\hat{F A H} + \hat{D A B} = 36 0^{0} - 9 0^{0} - 9 0^{0} = 18 0^{0}\)

mà \(\hat{D A B} + \hat{A D C} = 18 0^{0}\) (ABCD là hình bình hành)

nên \(\hat{F A H} = \hat{C D A}\)

Ta có: ABEF là hình vuông

=>AB=BE=FE=AF

mà AB=CD

nên AB=CD=BE=FE=AF

Ta có: ADGH là hình vuông

=>AD=DG=GH=HA

mà AD=BC

nên BC=AD=DG=GH=HA

Xét ΔFAH và ΔCDA có

FA=CD

\(\hat{F A H} = \hat{C D A}\)

AH=AD

Do đó: ΔFAH=ΔCDA

=>FH=CA

ΔFAH=ΔCDA

=>\(\hat{F H A} = \hat{C A D}\)

Gọi K là giao điểm của AC và FH

Ta có: \(\hat{K A H} + \hat{H A D} + \hat{D A C} = 18 0^{0}\)

=>\(\hat{K A H} + \hat{D A C} = 18 0^{0} - 9 0^{0} = 9 0^{0}\)

=>\(\hat{K A H} + \hat{F H A} = 9 0^{0}\)

=>ΔAKH vuông tại K

=>AK⊥FH tại K

=>CA⊥FH tại K

b: Ta có: \(\hat{C D G} = \hat{C D A} + \hat{A D G} = \hat{C D A} + 9 0^{0}\)

\(\hat{E B C} = \hat{E B A} + \hat{C B A} = 9 0^{0} + \hat{C B A}\)

mà \(\hat{C D A} = \hat{C B A}\) (ABCD là hình bình hành)

nên \(\hat{C D G} = \hat{E B C}\)

Xét ΔCDG và ΔEBC có

CD=EB

\(\hat{C D G} = \hat{E B C}\)

DG=BC

Do đó: ΔCDG=ΔEBC

=>CG=EC và \(\hat{D C G} = \hat{B E C} ; \hat{D G C} = \hat{B C E}\)

\(\hat{G C E} = \hat{D C B} - \hat{D C G} - \hat{B C E}\)

\(= \hat{D C B} - \hat{B E C} - \hat{B C E} = 18 0^{0} - \hat{A D C} - \left(\right. 18 0^{0} - \hat{E B C} \left.\right) = \hat{E B C} - \hat{A D C}\)

\(= \hat{E B A} + \hat{C B A} - \hat{A D C} = \hat{E B A} = 9 0^{0}\)

=>ΔGCE vuông cân tại C

Bài 2:

a: BO là phân giác của góc ABD

=>\(\hat{A B O} = \hat{D B O} = \frac{1}{2} \cdot \hat{A B D}\) (1)

CO là phân giác của góc ACE

=>\(\hat{A C O} = \hat{O C E} = \frac{1}{2} \cdot \hat{A C E} \left(\right. 2 \left.\right)\)

Ta có: \(\hat{A B D} + \hat{B A C} = 9 0^{0}\) (ΔADB vuông tại D)

\(\hat{A C E} + \hat{B A C} = 9 0^{0}\) (ΔAEC vuông tại E)

Do đó: \(\hat{A B D} = \hat{A C E} \left(\right. 3 \left.\right)\)

Từ (1),(2) suy ra \(\hat{A B O} = \hat{D B O} = \hat{A C O} = \hat{O C E}\)

Ta có: \(\hat{O B C} + \hat{O C B}\)

\(= \hat{O B D} + \hat{D B C} + \hat{O C E} + \hat{E C B}\)

\(= 2 \cdot \hat{O B D} + \hat{D B C} + \hat{E C B} = \hat{A B D} + 9 0^{0} - \hat{A B C} + 9 0^{0} - \hat{A C B}\)

\(= 18 0^{0} - \hat{A B C} - \hat{A C B} + \hat{A B D} = \hat{B A C} + \hat{A B D} = 9 0^{0}\)

=>ΔBOC vuông tại O

b: Xét ΔBMH có

BO là đường cao

BO là đường phân giác

Do đó: ΔBMH cân tại B

mà BO là đường cao

nên O là trung điểm của MH

Xét ΔCNK có

CO là đường cao

CO là đường phân giác

Do đó: ΔCNK cân tại C

mà CO là đường cao

nên O là trung điểm của NK

Xét tứ giác MNHK có

O là trung điểm chung của MH và NK

=>MNHK là hình bình hành

Hình bình hành MNHK có MH⊥NK

nên MNHK là hình thoi

Bài 5:

a:

AMCD là hình vuông

=>CM⊥MA tại M

=>CM⊥AB tại M

MBFE là hình vuông

=>MB⊥ME tại M

=>ME⊥AB tại M

mà CM⊥AB tại M

và CM,ME có điểm chung là M

nên M,C,E thẳng hàng

Gọi K là giao điểm của AC và BE

AMCD là hình vuông

=>AC là phân giác của góc DAM

=>\(\hat{CAM}=\frac12\cdot\hat{DAM}=45^0\)

MBFE là hình vuông

=>BE là phân giác của góc MBF

=>\(\hat{MBE}=\hat{FBE}=\frac12\cdot\hat{MBF}=45^0\)

Xét ΔKAB có \(\hat{KAB}+\hat{KBA}=45^0+45^0=90^0\)

nên ΔKAB vuông tại K

=>AK⊥EB tại K

Xét ΔEAB có

AK,EM là các đường cao

AK cắt EM tại C

Do đó: C là trực tâm của ΔEAB

=>BC⊥AE

Bài 4:

a: Xét ΔADI vuông tại D và ΔAHI vuông tại H có

AI chung

\(\hat{DAI}=\hat{HAI}\)

Do đó: ΔADI=ΔAHI

=>AD=AH

mà AD=AB

nên AH=AB

Xét ΔAHK vuông tại H và ΔABK vuông tại B có

AK chung

AH=AB

Do đó: ΔAHK=ΔABK

b: ΔAHK=ΔABK

=>\(\hat{HAK}=\hat{BAK}\)

=>AK là phân giác của góc HAB

=>\(\hat{HAB}=2\cdot\hat{HAK}\)

\(\hat{DAH}+\hat{BAH}=\hat{BAD}\) (tia AH nằm giữa hai tia AB và AD)

\(\Rightarrow2\left(\hat{IAH}+\hat{HAK}\right)=90^0\)

=>\(2\cdot\hat{IAK}=90^0\)

=>\(\hat{IAK}=45^0\)

\(\frac{2a-b}{a-b}+\frac{-a}{a-b}\)

\(=\frac{2a-b+\left(-a\right)}{a-b}\)

\(=\frac{a-b}{a-b}\)

=1

23 giờ trước (9:39)

Bài 1:

\(M=x^3-6x^2+12x-8\)

\(=x^3-3\cdot x^2\cdot2+3\cdot x\cdot2^2-2^3\)

\(=\left(x-2\right)^3\)

Thay x=12 vào M, ta được:

\(M=\left(12-2\right)^3=10^3=1000\)

Bài 2:

a: \(P=\left(x+1\right)^3-x\left(x-2\right)\left(x+3\right)\)

\(=x^3+3x^2+3x+1-x\left(x^2+3x-2x-6\right)\)

\(=x^3+3x^2+3x+1-x\left(x^2+x-6\right)\)

\(=x^3+3x^2+3x+1-x^3-x^2+6x=2x^2+9x+1\)

b: Thay x=2 vào P, ta được:

\(P=2\cdot2^2+9\cdot2+1=8+18+1=9+18=27\)

Bài 3:

a: \(5x^2-10x=5x\cdot x-5x\cdot2=5x\left(x-2\right)\)

b: \(x^2-12xy+36y^2-49\)

\(=\left(x-6y\right)^2-7^2\)

=(x-6y-7)(x-6y+7)

c: \(3x+x^2-3y-y^2\)

\(=x^2-y^2+3\left(x-y\right)\)

=(x-y)(x+y)+3(x-y)

=(x-y)(x+y+3)

Bài 4:

a: \(x\left(2x-1\right)-3\left(1-2x\right)=0\)

=>x(2x-1)+3(2x-1)=0

=>(2x-1)(x+3)=0

=>\(\left[\begin{array}{l}2x-1=0\\ x+3=0\end{array}\right.\Rightarrow\left[\begin{array}{l}x=\frac12\\ x=-3\end{array}\right.\)

b: \(\left(3x+4\right)^2-\left(3x-1\right)\left(3x+1\right)=49\)

=>\(9x^2+24x+16-9x^2+1=49\)

=>24x+17=49

=>24x=49-17=32

=>\(x=\frac{32}{24}=\frac43\)

c: \(x^2+2x=15\)

=>\(x^2+2x-15=0\)

=>(x+5)(x-3)=0

=>\(\left[\begin{array}{l}x+5=0\\ x-3=0\end{array}\right.\Rightarrow\left[\begin{array}{l}x=-5\\ x=3\end{array}\right.\)

Bài 5:

a: C=A+B

\(=xy-3x^2y^2+x^4-5y^3+x^4-5y^3-2x^2y^2-xy=-5x^2y^2+2x^4-10y^3\)

b: Bậc của C là 4

c: Thay x=-1;y=-1 vào C, ta được:

\(C=-5\cdot\left(-1\right)^2\cdot\left(-1\right)^2+2\cdot\left(-1\right)^4-10\cdot\left(-1\right)^3\)

=-5+2+10

=-3+10

=7

Bài 6:

a: \(A=2x^2-4x+2xy+y^2+2025\)

\(=x^2-4x+4+x^2+2xy+y^2+2021=\left(x-2\right)^2+\left(x+y\right)^2+2021\ge2021\forall x,y\)

Dấu '=' xảy ra khi x-2=0 và x+y=0

=>x=2 và y=-x=-2

b: (x-7)(x-5)(x-4)(x-2)-72

\(=\left(x^2-9x+14\right)\left(x^2-9x+20\right)-72\)

\(=\left(x^2-9x+14\right)^2+6\left(x^2-9x+14\right)-72\)

\(=\left(x^2-9x+14+12\right)\left(x^2-9x+14-6\right)=\left(x^2-9x+26\right)\left(x^2-9x+8\right)\)

\(=\left(x^2-9x+26\right)\left(x-1\right)\left(x-8\right)\)

12 giờ trước (20:47)

\(P=\left(x-1\right)\left(x^2+x+1\right)+2\cdot\left(x-2\right)\left(x+2\right)+x^2\left(2-x\right)\)

\(=x^3-1+2\left(x^2-4\right)+2x^2-x^3\)

\(=2x^2-1+2x^2-8=4x^2-9\)

=>P có phụ thuộc vào biến x

17 tháng 9

cau 1 2 3 4 5


17 tháng 9

giup minh voi


15 tháng 9

12567876

a: Xét ΔMNP và ΔKPN có

\(\hat{MNP}=\hat{KPN}\) (hai góc so le trong, MN//PK)

NP chung

\(\hat{MPN}=\hat{KNP}\) (hai góc so le trong, MP//NK)

Do đó: ΔMNP=ΔKPN

=>MN=KP; MP=KN

ta có: MP=KN

MP=NQ

Do đó: NK=NQ

=>ΔNKQ cân tại N

b: Ta có: ΔNKQ cân tại N

=>\(\hat{NKQ}=\hat{NQK}\)

\(\hat{NKQ}=\hat{MPQ}\) (hai góc đồng vị, MP//NK)

nên \(\hat{MPQ}=\hat{NQP}\)

Xét ΔMQP và ΔNPQ có

MP=NQ

\(\hat{MPQ}=\hat{NQP}\)

PQ chung

Do đó: ΔMQP=ΔNPQ

c: ΔMQP=ΔNPQ

=>\(\hat{MQP}=\hat{NPQ}\)

=>MNPQ là hình thang cân

Bài 13:

a: \(\left\lbrack5\left(x-2y\right)^3\right\rbrack:\left(5x-10y\right)\)

\(=\frac{5\left(x-2y\right)^3}{5\cdot\left(x-2y\right)}\)

\(=\left(x-2y\right)^2\)

b: \(\left\lbrack5\left(a-b\right)^3+2\left(a-b\right)^2\right\rbrack:\left(b-a\right)^2\)

\(=\frac{5\left(a-b\right)^3+2\left(a-b\right)^2}{\left(a-b\right)^2}\)

\(=\frac{5\left(a-b\right)^3}{\left(a-b\right)^2}+\frac{2\left(a-b\right)^2}{\left(a-b\right)^2}\)

=5(a-b)+2

c: Sửa đề: \(\left(x^3+8y^3\right):\left(x+2y\right)\)

\(=\frac{\left(x+2y\right)\left(x^2-2xy+4y^2\right)}{x+2y}\)

\(=x^2-2xy+4y^2\)

Bài 11:

a: Gọi ba số tự nhiên liên tiếp lần lượt là a;a+1;a+2

Tích của hai số sau lớn hơn tích của hai số đầu là 52 nên ta có:

\(\left(a+1\right)\left(a+2\right)-a\left(a+1\right)=52\)

=>\(\left(a+1\right)\left(a+2-a\right)=52\)

=>2(a+1)=52

=>a+1=26

=>a=25

Vậy: ba số tự nhiên liên tiếp cần tìm là 25;25+1=26; 25+2=27

b: a chia 5 dư 1 nên a=5x+1

b chia 5 dư 4 nên b=5y+4

ab+1

\(=\left(5x+1\right)\left(5y+4\right)+1\)

=25xy+20x+5y+4+1

=25xy+20x+5y+5

=5(5xy+4x+y+1)⋮5

c: \(Q=2n^2\left(n+1\right)-2n\left(n^2+n-3\right)\)

\(=2n^3+2n^2-2n^3-2n^2+6n\)

=6n⋮6

Bài 8:

a: \(A=x^2+2xy-3x^3+2y^3+3x^3-y^3\)

\(=x^2+2xy-3x^3+3x^3+2y^3-y^3\)

\(=x^2+2xy+y^3\)

Khi x=5;y=4 thì \(A=5^2+2\cdot5\cdot4+4^3=25+40+64=129\)

b: x=-1;y=-1

=>xy=1

\(x^2y^2=\left(xy\right)^2=1^2=1;x^4y^4=\left(xy\right)^4=1^4=1\) ; \(x^6y^6=\left(xy\right)^6=1^6=1;x^8y^8=\left(xy\right)^8=1^8=1\)

=>B=1-1+1-1+1=1

12 tháng 8