Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

ta có 2015 x 2017 >2017^2 -2
2016 x 2018 > 2016^2
=> A> B

Sửa: p > 3
G/s không có ba chữ số nào giống nhau trong 20 số đó.
Vì các số chỉ có thể từ 0 -> 9 nên mỗi chữ số xuất hiện 2 lần
Khi đó tổng các chữ số là: 2(0 + 1 + ... + 9) = 2.45 = 90 chia hết cho 3
===> p chia hết cho 3 (vô lí)
Vậy ta có đpcm
Cho x, y là hai số thực khác 0 thỏa mãn \(2x^2+\frac{y^2}{4}+\frac{1}{x^2}=4\). Tìm giá tị lớn nhất và nhỏ nhất của biểu thức #Hỏi cộng đồng OLM #Toán lớp 8


1. Gọi số bé và số lớn lần lượt là a và a + 1 \(\left(a\in Z\right)\)
Ta có: \(2a+3\left(a+1\right)=-87\)
\(\Leftrightarrow5a+3=-87\Leftrightarrow a=-18\Rightarrow a+1=-17\)
Vậy số lớn là -17 và số bé là -18

Ta có : \(a+b+c=2016\Rightarrow\frac{1}{a+b+c}=\frac{1}{2016}\)
\(\Rightarrow\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{1}{a+b+c}\)
\(\Leftrightarrow\left(\frac{1}{a}+\frac{1}{b}\right)+\left(\frac{1}{c}-\frac{1}{a+b+c}\right)=0\)
\(\Leftrightarrow\frac{a+b}{ab}+\frac{a+b}{c\left(a+b+c\right)}=0\)
\(\Leftrightarrow\left(a+b\right)\left[\frac{c^2+ac+bc+ab}{abc\left(a+b+c\right)}\right]=0\)
\(\Leftrightarrow\left(a+b\right)\left(c^2+ac+bc+ab\right)=0\)
\(\Leftrightarrow\left(a+b\right)\left(b+c\right)\left(c+a\right)=0\)
\(\Rightarrow\left[\begin{array}{nghiempt}a+b=0\\b+c=0\\c+a=0\end{array}\right.\)
- Nếu a + b = 0 => c = 2016 (1)
- Nếu b + c = 0 => a = 2016 (2)
- Nếu a + c = 0 => b = 2016 (3)
Từ (1) , (2) và (3) ta có điều phải chứng minh.

đề sai, sửa lại nhé :)
cho hai số a và b(a<b)
uses crt;
var a,b,nt,cp,hh,i,j,x:longint;
begin
write('nhap 2 so a va b:');
readln(a,b);
nt:=0; cp:=0;hh:=0;
for i:=a to b do begin
if i>1 then begin
x:=0;
for j:=2 to i-1 do
if i mod j=0 then x:=1;
if x=0 then inc(nt);
end;
x:=trunc(sqrt(i));
if sqr(x)=i then inc(cp);
x:=0;
if i>1 then
for j:=1 to i-1 do
if i mod j=0 then x:=x+j;
if x=i then inc(hh);
end;
writeln('co ',nt,' so nguyen to');
writeln('co ',cp,' so chinh phuong');
writeln('co ',hh,' so hoan hao');
readln
end.

\(^∗\)Xét \(n=2011\)thì \(S\left(2011\right)=2011^2-2011.2011+2010=2010\)(vô lí)
\(^∗\)Xét \(n>2011\)thì \(n-2011>0\)do đó \(S\left(n\right)=n\left(n-2011\right)+2010>n\left(n-2011\right)>n\)(vô lí do \(S\left(n\right)\le n\))
* Xét \(1\le n\le2010\)thì \(\left(n-1\right)\left(n-2010\right)\le0\Leftrightarrow n^2-2011n+2010\le0\)hay \(S\left(n\right)\le0\)(vô lí do \(S\left(n\right)>0\))
Vậy không tồn tại số nguyên dương n thỏa mãn đề bài
Gọi \(d_{1}\) là số chữ số của \(2^{2016}\), \(d_{2}\) là số chữ số của \(5^{2016}\). Ta có
\(2^{2016} \cdot 5^{2016} = \left(\right. 2 \cdot 5 \left.\right)^{2016} = 10^{2016} .\)
Do đó tích của hai số đó bằng \(10^{2016}\) (một 1 theo sau 2016 chữ số 0), tức là có \(2017\) chữ số.
Theo bất đẳng thức về chữ số, luôn có
\(10^{d_{1} - 1} \leq 2^{2016} < 10^{d_{1}} , 10^{d_{2} - 1} \leq 5^{2016} < 10^{d_{2}} .\)
Nhân hai bất đẳng thức và so sánh với \(10^{2016}\) cho
\(10^{d_{1} + d_{2} - 2} \leq 10^{2016} < 10^{d_{1} + d_{2}} .\)
Từ đó \(d_{1} + d_{2}\) bằng \(2017\) hoặc \(2018\). Nếu \(d_{1} + d_{2} = 2018\) thì phải có \(2^{2016} = 10^{d_{1} - 1}\) và \(5^{2016} = 10^{d_{2} - 1}\) (để đạt dấu “=” ở vế trái), điều này là không thể vì \(2^{2016}\) không phải lũy thừa của \(10\). Vậy \(d_{1} + d_{2} = 2017\).
Kết luận: khi viết hai số \(2^{2016}\) và \(5^{2016}\) liền nhau, số thu được có \(2017\) chữ số.
cái này nè
xin cái tick