
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


3) \(A=2017.2019=\left(2018+1\right)\left(2018-1\right)=2018^2-1\)
\(\Rightarrow A< B\)
Bài 1:
a) \(x^2+2y^2+2xy-2y+2=0\)
\(\Leftrightarrow\)\(\left(x+y\right)^2+\left(y-1\right)^2+1=0\)
Ta thấy \(VT>0\)
suy ra phương trình vô nghiệm
b) \(x^2+y^2-4x+4=0\)
\(\Leftrightarrow\)\( \left(x-2\right)^2+y^2=0\)
\(\Leftrightarrow\)\(\hept{\begin{cases}x-2=0\\y=0\end{cases}}\)
\(\Leftrightarrow\)\(\hept{\begin{cases}x=2\\y=0\end{cases}}\)
Vậy...
Bài 2:
a) \(8y^3-125x^3=\left(2y-5x\right)\left(4y^2+10xy+25y^2\right)\)
b) \(a^6-b^6=\left(a^3-b^3\right)\left(a^3+b^3\right)\)
\(=\left(a-b\right)\left(a+b\right)\left(a^2+ab+b^2\right)\left(a^2-ab+b^2\right)\)
c) \(x^4-1=\left(x^2-1\right)\left(x^2+1\right)=\left(x-1\right)\left(x+1\right)\left(x^2+1\right)\)
Bài 3:
\(A=2017.2019=\left(2018-1\right)\left(2018+1\right)=2018^2-1< 2018^2=B\)
Vậy \(A< B\)

Làm bài 1 thôi !! Mấy bài kia tương tự . Tìm nhân tử chung ra .
a) \(m^2-n^2=\left(m-n\right)\left(m+n\right)\)
b) \(\left(x^2+x-1\right)^2-\left(x^2+2x+3\right)^2=\left(x^2+x-1+x^2+2x+3\right)\left(x^2+x-1-x^2-2x-3\right)\)
\(=\left(2x^2+3x+2\right)\left(-x-4\right)\)
c) \(-16+\left(x-3\right)^2=\left(x-3+4\right)\left(x-3-4\right)=x\left(x-7\right)\)
d) \(64+16y+y^2=\left(y+8\right)\left(y+8\right)\)

\(x^2+y^2-4x-6y+13\)
\(=\left(x^2-4x+4\right)+\left(y^2-6y+9\right)\)
\(=\left(x-2\right)^2+\left(y-3\right)^2\)
hk tốt

\(\left(x+y+4\right)\left(x+y-4\right)=\) \(\left(x+y\right)^2-4^2\)
\(x^2+y^2-4x-6y+13\)
\(=\left(x^2-4x+4\right)+\left(y^2-6y+9\right)\)
\(=\left(x-2\right)^2+\left(y-3\right)^2\)
hk tốt

Bài 1:
\(B=\dfrac{1}{9}x^2-2x+9\)
\(=\left(\dfrac{1}{3}x\right)^2-2\cdot\dfrac{1}{3}x\cdot3+3^2=\left(\dfrac{1}{2}x-3\right)^2\)
\(C=x^3-9x^2+27x-27=\left(x-3\right)^3\)
\(D=27x^3+27x^2+9x+1=\left(3x+1\right)^3\)
\(E=\left(x-2y\right)^3\)

a, \(x^2-2=\left(x-\sqrt{2}\right)\left(x+\sqrt{2}\right)\)
b, \(y^2-13=\left(y-\sqrt{13}\right)\left(y+\sqrt{13}\right)\)
c, \(\left(x^2-1\right)^2-\left(y+3\right)^2=\left(x^2-1-y-3\right)\left(x^2-1+y+3\right)\)
\(=\left(x^2-4-y\right)\left(x^2+2+y\right)\)
d, \(2x^4-4=2\left(x^4-2\right)\)
e, \(\left(a^2-b^2\right)^2-\left(a^2+b^2\right)^2=\left(a^2-b^2-a^2-b^2\right)\left(a^2-b^2+a^2+b^2\right)\)
\(=-2b^2.2a^2=-4.a^2b^2\)
f, \(a^6-b^6=\left(a^3\right)^2-\left(b^3\right)^2\)
\(=\left(a^3-b^3\right)\left(a^3+b^3\right)\)

a) \(x^6-4=\left(x^3\right)^2-2^2=\left(x^3-2\right).\left(x^3+2\right)\)
b) \(-9x^2+1=1^2-\left(3x\right)^2=\left(1-3x\right).\left(1+3x\right)\)
c) \(x^{10}-9=\left(x^5\right)^2-3^2=\left(x^5-3\right).\left(x^5+3\right)\)
mk chỉ làm đk bài 1 thui ,thông cảm cho mk nha bạn
\(a;x^6-4=\left(x^3\right)^2-2^2=\left(x^3-2\right)\left(x^3+2\right)\)
\(b;-9x^2+1=1^2-3x^2=\left(1-3x\right).\left(1+3x\right)\)
\(c;x^{10}-9=\left(x^5\right)^2-3^2=\left(x^5-3\right).\left(x^5+3\right)\)
\(#LTH\)
a) \(x^2y^2-a^4b^6=\left(xy\right)^2-\left(a^2b^3\right)^2=\left(xy-a^2b^3\right).\left(xy+a^2b^3\right)\)
b) \(4x^2y^4-\left(3xy^2-1\right)^2=\left(2xy^2\right)^2-\left(3xy^2-1\right)^2\)= \(\left(2xy^2-3xy^2+1\right).\left(2xy^2+3xy^2-1\right)\)
= \(\left(-xy^2+1\right).\left(5xy^2-1\right)\)