K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 9 2019

a,       \(x^2-2=\left(x-\sqrt{2}\right)\left(x+\sqrt{2}\right)\)

b,       \(y^2-13=\left(y-\sqrt{13}\right)\left(y+\sqrt{13}\right)\)

c,      \(\left(x^2-1\right)^2-\left(y+3\right)^2=\left(x^2-1-y-3\right)\left(x^2-1+y+3\right)\)

                                                          \(=\left(x^2-4-y\right)\left(x^2+2+y\right)\)

14 tháng 9 2019

d,     \(2x^4-4=2\left(x^4-2\right)\)

e,    \(\left(a^2-b^2\right)^2-\left(a^2+b^2\right)^2=\left(a^2-b^2-a^2-b^2\right)\left(a^2-b^2+a^2+b^2\right)\)

                                                               \(=-2b^2.2a^2=-4.a^2b^2\)

f,        \(a^6-b^6=\left(a^3\right)^2-\left(b^3\right)^2\)

                            \(=\left(a^3-b^3\right)\left(a^3+b^3\right)\)

6 tháng 7 2018

MỌI NGƯỜI TRẢ LỜI GIÚP MÌNH VỚI MÌNH CẦN GẤP LẮP

6 tháng 9 2020

Làm bài 1 thôi !! Mấy bài kia tương tự . Tìm nhân tử chung ra .

a) \(m^2-n^2=\left(m-n\right)\left(m+n\right)\)

b) \(\left(x^2+x-1\right)^2-\left(x^2+2x+3\right)^2=\left(x^2+x-1+x^2+2x+3\right)\left(x^2+x-1-x^2-2x-3\right)\)

\(=\left(2x^2+3x+2\right)\left(-x-4\right)\)

c) \(-16+\left(x-3\right)^2=\left(x-3+4\right)\left(x-3-4\right)=x\left(x-7\right)\)

d) \(64+16y+y^2=\left(y+8\right)\left(y+8\right)\)

30 tháng 7 2018

từ từ ít ít từng câu thôi bạn ơi

Bài 1:

a) \(\left(a-b^2\right)\left(a+b^2\right)=a^2-b^4\)

b) \(\left(a^2+2a-3\right)\left(a^2+2a+3\right)=\left(a^2+2a\right)^2-9\)

c) \(\left(a^2+2a+3\right)\left(a^2-2a-3\right)=a^2-\left(2a+3\right)^2\)

d) \(\left(a^2-2a+3\right)\left(a^2+2a+3\right)=9-\left(a^2-2a\right)^2\)

e) \(\left(-a^2-2a+3\right)\left(-a^2-2a+3\right)=\left(-a^2-2a+3\right)^2\)

g) \(\left(a^2+2a+3\right)\left(a^2-2a+3\right)=\left(a^2+3\right)^2-4a^2\)

f) \(\left(a^2+2a\right)\left(2a-a^2\right)=4a^2-a^4\)

Bài 2 :

a) \(\left(x+1\right)\left(x^2-x+1\right)=x^3+1\)

b) \(\left(x+y+z\right)^2=\left(x+y+z\right)\left(x+y+z\right)=x^2+xy+xz+yx+y^2+yz+zx+zy+z^2=x^2+2xy+2yz+2xz+y^2+z^2\)

c) \(\left(x-y+z\right)^2=\left(x-y+z\right)\left(x-y+z\right)=x^2-xy+xz-xy+y^2-yz+xz-yz+z^2=x^2+y^2+z^2-2xy+2xz-2yz\)d) \(\left(x-2y\right)\left(x^2+2xy+4y^2\right)=\left(x-2y\right)^3\)

e) \(\left(x-y-z\right)^2=\left(x-y-z\right)\left(x-y-z\right)=x^2-xy-xz-xy+y^2+yz-xz+yz+z^2=x^2-2xy-2xz+2yz+y^2+z^2\)

16 tháng 6 2015

bạn phải tách từng câu ra. chứ kiểu này k ai trả lời cho đâu

10 tháng 4 2016

2)

a)x2-y2=(x+y).(x-y)=(87+13).(87-13)=100.74=7400

b)x3-3x2+3x-1=(x-1)3=(101-1)3=1003=1000000

c)x3+9x2+27x+27=(x+3)3=(97+3)3=1003=1000000

4)

a)x2-6x+10=x2-6x+9+1=(x-3)2+1>=1>0 voi moi x

b)4x-x2-5= -(x2-4x+5)= -(x2-4x+4+1)= -(x-2)2 - 1<0 voi moi x

7 tháng 7 2018

\(a.9a^2-25b^4=\left(3a\right)^2-\left(5b^2\right)^2=\left(3a-5b^2\right)\left(3a+5b^2\right)\)

\(b.\left(2x+y\right)^2-1=\left(2x+y-1\right)\left(2x+y+1\right)\)

\(c.\left(x+y+z\right)^2-\left(x-y-z\right)^2=\left[\left(x+y+z\right)+\left(x-y-z\right)\right]\left[\left(x+y+z\right)\right]-\left(x-y-z\right)\\ =2x.\left(2y+2z\right)\)

7 tháng 7 2018

a) \(9a^2-25b^4=\left(3a\right)^2-\left(5b^2\right)^2=\left(3a-5b^2\right)\left(3a+5b^2\right)\)

b) \(\left(2x+y\right)^2-1=\left(2x+y\right)^2-1^2=\left(2x+y+1\right)\left(2x+y-1\right)\)

c) \(\left(x+y+z\right)^2-\left(x-y-z\right)^2=\left(x+y+z+x-y-z\right)\left(x+y+z-x+y+z\right)\)

                                                              \(=2x\left(2y+2z\right)\)

27 tháng 7 2016

Hỏi đáp Toán

27 tháng 7 2016

Mình biết nhưng ý mình là mình đang học bài những hằng đẳng thức đáng nhớ , nếu như mà học bài đơn thức nhân đa thức thì mình biết làm rồi không cần hỏi . tại bài mình mới học chưa được hiểu cho lắm nên nhờ mấy bạn giúp mình làm 1 câu thôi ạ

15 tháng 7 2018

3) \(A=2017.2019=\left(2018+1\right)\left(2018-1\right)=2018^2-1\)

\(\Rightarrow A< B\)

15 tháng 7 2018

Bài 1:

a)  \(x^2+2y^2+2xy-2y+2=0\)

\(\Leftrightarrow\)\(\left(x+y\right)^2+\left(y-1\right)^2+1=0\)

Ta thấy  \(VT>0\)

suy ra phương trình vô nghiệm

b)  \(x^2+y^2-4x+4=0\)

\(\Leftrightarrow\)\( \left(x-2\right)^2+y^2=0\)

\(\Leftrightarrow\)\(\hept{\begin{cases}x-2=0\\y=0\end{cases}}\)

\(\Leftrightarrow\)\(\hept{\begin{cases}x=2\\y=0\end{cases}}\)

Vậy...

Bài 2:

a)  \(8y^3-125x^3=\left(2y-5x\right)\left(4y^2+10xy+25y^2\right)\)

b)  \(a^6-b^6=\left(a^3-b^3\right)\left(a^3+b^3\right)\)

\(=\left(a-b\right)\left(a+b\right)\left(a^2+ab+b^2\right)\left(a^2-ab+b^2\right)\)

c)  \(x^4-1=\left(x^2-1\right)\left(x^2+1\right)=\left(x-1\right)\left(x+1\right)\left(x^2+1\right)\)

Bài 3:

\(A=2017.2019=\left(2018-1\right)\left(2018+1\right)=2018^2-1< 2018^2=B\)

Vậy  \(A< B\)