
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


B=|x-2022|+|1-x|>=|x-2022+1-x|=2021
Dấu = xảy ra khi 1<=x<=2022

Đây nhé bé
Câu1
Vì \(\mid x \mid \geq 0 \Rightarrow \mid x \mid + 1 \geq 1\).
Do đó \(\left(\right. \mid x \mid + 1 \left.\right)^{10} \geq 1^{10} = 1\).
Suy ra:
\(A = \left(\right. \mid x \mid + 1 \left.\right)^{10} + 2023 \geq 1 + 2023 = 2024.\)
Dấu “=” chỉ xảy ra khi \(\mid x \mid = 0 \Leftrightarrow x = 0\).
\(\Rightarrow\) Giá trị nhỏ nhất của \(A\) là \(\boxed{2024}\), đạt tại \(x = 0\).
Câu 2 ( câu này kiến thức nâng cao nhé em nên là khi em đọc lời giải sẽ có khó hiểu nhé )
Đặt \(n = 2022\). Khi đó:
\(A = \frac{n^{2022} + 1}{n^{2023} + 1} , B = \frac{n^{2021} + 1}{n^{2022} + 1} .\)
Xét tổng quát với \(a_{k} = \frac{n^{k} + 1}{n^{k + 1} + 1} , \left(\right. n > 1 \left.\right)\).
Ta gọi k là luỹ thừa của cơ số
\(a_{k} > a_{k - 1} \textrm{ }\textrm{ } \Longleftrightarrow \textrm{ }\textrm{ } \left(\right. n^{k} + 1 \left.\right)^{2} > \left(\right. n^{k + 1} + 1 \left.\right) \left(\right. n^{k - 1} + 1 \left.\right) .\)
Xét hiệu:
\(\left(\right.n^{k}+1\left.\right)^2-\left(\right.n^{k+1}+1\left.\right)\left(\right.n^{k-1}+1\left.\right)=-n^{k-1}\left(\right.n-1\left.\right)^2<0\)
Vậy \(a_{k} < a_{k - 1}\), tức dãy \(\left(\right. a_{k} \left.\right)\) giảm dần theo \(k\)
Do đó:
\(A = a_{2022} < a_{2021} = B .\)
\(\Rightarrow B>A\)
Câu3
Ta đổi : \(27 = 3^{3}\), \(9 = 3^{2}\), \(125 = 5^{3}\).
\(\frac{5^{16} \cdot \left(\right. 3^{3} \left.\right)^{7}}{\left(\right. 5^{3} \left.\right)^{5} \cdot \left(\right. 3^{2} \left.\right)^{11}} = \frac{5^{16} \cdot 3^{21}}{5^{15} \cdot 3^{22}} = 5^{16 - 15} \cdot 3^{21 - 22} = \frac{5}{3} .\)
Vậy kết quả bằng \(\frac{5}{3}\).
Câu 3:
\(\frac{5^{16}\cdot27^7}{125^5\cdot9^{11}}\)
\(=\frac{5^{16}\cdot\left(3^3\right)^7}{\left(5^3\right)^5\cdot\left(3^2\right)^{11}}=\frac{5^{16}\cdot3^{21}}{5^{15}\cdot3^{22}}\)
\(=\frac53\)
Câu 2:
\(2022A=\frac{2022^{2023}+2022}{2022^{2023}+1}=1+\frac{2021}{2022^{2023}+1}\)
\(2022B=\frac{2022^{2022}+2022}{2022^{2022}+1}=1+\frac{2021}{2022^{2022}+1}\)
Ta có: \(2022^{2023}+1>2022^{2022}+1\)
=>\(\frac{2021}{2022^{2023}+1}<\frac{2021}{2022^{2022}+1}\)
=>\(\frac{2021}{2022^{2023}+1}+1<\frac{2021}{2022^{2022}+1}+1\)
=>2022A<2022B
=>A<B
Câu 1:
\(\left|x\right|\ge0\forall x\)
=>\(\left|x\right|+1\ge1\forall x\)
=>\(\left(\left|x\right|+1\right)^{10}\ge1^{10}=1\forall x\)
=>\(\left(\left|x\right|+1\right)^{10}+2023\ge1+2023=2024\forall x\)
Dấu '=' xảy ra khi x=0


Sửa đề: Tìm GTNN
D = |x - 2022| + |x - 1|
= |x - 2022| + |1 - x|
≥ |x - 2022 + 1 - x| = 2021
Vậy GTNN của D là 2021

Sửa đề: Tìm GTNN
D = |x - 2022| + |x - 1|
= |x - 2022| + |1 - x|
≥ |x - 2022 + 1 - x| = 2021
Vậy GTNN của D là 2021


Tìm GTNN chứ nhỉ e
\(D=\left|2022-x\right|+\left|x-1\right|\ge\left|2022-x+x-1\right|=2021\)
Dấu "=" xảy ra \(\Leftrightarrow\left(2022-x\right)\left(x-1\right)\ge0\)
\(\Leftrightarrow1\le x\le2022\)
Vậy Min D=2021 \(\Leftrightarrow1\le x\le2022\)

\(A=\left(x-3,5\right)^2+1\)
Vì \(\left(x-3,5\right)^2\ge0\)
=> \(\left(x-3,5\right)^2+1\ge1\)
Vậy GTNN của A là 1 khi x=3,5
\(B=\left(2x-3\right)^4-2\)
Vì \(\left(2x-3\right)^4\ge0\)
=> \(\left(2x-3\right)^4-2\ge-2\)
Vậy GTNN của B là -2 khi x=\(\frac{3}{2}\)
\(C=2-x^2=-x^2+2\)
Vì \(x^2\ge0\)
=> \(-x^2\le0\)
=>\(-x^2+2\le2\)
Vậy GTLN của C là 2 khi x=0
\(D=-\left(x-3\right)^2+1\)
Vì \(\left(x-3\right)^2\ge0\)
=> \(-\left(x-3\right)^2\le0\)
=>\(-\left(x-3\right)+1\le1\)
Vậy GTLN của D là 1 khi x=3
Biểu thức này không có GTLN bạn nhé.