K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
6 tháng 1 2024

Biểu thức này không có GTLN bạn nhé.

13 tháng 12 2022

B=|x-2022|+|1-x|>=|x-2022+1-x|=2021

Dấu = xảy ra khi 1<=x<=2022

8 tháng 12 2023

Kết luận đâu bạn?

7 tháng 9

Đây nhé bé

Câu1

\(\mid x \mid \geq 0 \Rightarrow \mid x \mid + 1 \geq 1\).
Do đó \(\left(\right. \mid x \mid + 1 \left.\right)^{10} \geq 1^{10} = 1\).

Suy ra:

\(A = \left(\right. \mid x \mid + 1 \left.\right)^{10} + 2023 \geq 1 + 2023 = 2024.\)

Dấu “=” chỉ xảy ra khi \(\mid x \mid = 0 \Leftrightarrow x = 0\).

\(\Rightarrow\) Giá trị nhỏ nhất của \(A\)\(\boxed{2024}\), đạt tại \(x = 0\).

Câu 2 ( câu này kiến thức nâng cao nhé em nên là khi em đọc lời giải sẽ có khó hiểu nhé )

Đặt \(n = 2022\). Khi đó:

\(A = \frac{n^{2022} + 1}{n^{2023} + 1} , B = \frac{n^{2021} + 1}{n^{2022} + 1} .\)

Xét tổng quát với \(a_{k} = \frac{n^{k} + 1}{n^{k + 1} + 1} , \left(\right. n > 1 \left.\right)\).

Ta gọi k là luỹ thừa của cơ số

\(a_{k} > a_{k - 1} \textrm{ }\textrm{ } \Longleftrightarrow \textrm{ }\textrm{ } \left(\right. n^{k} + 1 \left.\right)^{2} > \left(\right. n^{k + 1} + 1 \left.\right) \left(\right. n^{k - 1} + 1 \left.\right) .\)

Xét hiệu:

\(\left(\right.n^{k}+1\left.\right)^2-\left(\right.n^{k+1}+1\left.\right)\left(\right.n^{k-1}+1\left.\right)=-n^{k-1}\left(\right.n-1\left.\right)^2<0\)

Vậy \(a_{k} < a_{k - 1}\), tức dãy \(\left(\right. a_{k} \left.\right)\) giảm dần theo \(k\)

Do đó:

\(A = a_{2022} < a_{2021} = B .\)

\(\Rightarrow B>A\)

Câu3

Ta đổi : \(27 = 3^{3}\), \(9 = 3^{2}\), \(125 = 5^{3}\).

\(\frac{5^{16} \cdot \left(\right. 3^{3} \left.\right)^{7}}{\left(\right. 5^{3} \left.\right)^{5} \cdot \left(\right. 3^{2} \left.\right)^{11}} = \frac{5^{16} \cdot 3^{21}}{5^{15} \cdot 3^{22}} = 5^{16 - 15} \cdot 3^{21 - 22} = \frac{5}{3} .\)

Vậy kết quả bằng \(\frac{5}{3}\).

Câu 3:

\(\frac{5^{16}\cdot27^7}{125^5\cdot9^{11}}\)

\(=\frac{5^{16}\cdot\left(3^3\right)^7}{\left(5^3\right)^5\cdot\left(3^2\right)^{11}}=\frac{5^{16}\cdot3^{21}}{5^{15}\cdot3^{22}}\)

\(=\frac53\)

Câu 2:

\(2022A=\frac{2022^{2023}+2022}{2022^{2023}+1}=1+\frac{2021}{2022^{2023}+1}\)

\(2022B=\frac{2022^{2022}+2022}{2022^{2022}+1}=1+\frac{2021}{2022^{2022}+1}\)

Ta có: \(2022^{2023}+1>2022^{2022}+1\)

=>\(\frac{2021}{2022^{2023}+1}<\frac{2021}{2022^{2022}+1}\)

=>\(\frac{2021}{2022^{2023}+1}+1<\frac{2021}{2022^{2022}+1}+1\)

=>2022A<2022B

=>A<B

Câu 1:

\(\left|x\right|\ge0\forall x\)

=>\(\left|x\right|+1\ge1\forall x\)

=>\(\left(\left|x\right|+1\right)^{10}\ge1^{10}=1\forall x\)

=>\(\left(\left|x\right|+1\right)^{10}+2023\ge1+2023=2024\forall x\)

Dấu '=' xảy ra khi x=0

9 tháng 12 2023

Sửa đề: Tìm GTNN

D = |x - 2022| + |x - 1|

= |x - 2022| + |1 - x|

≥ |x - 2022 + 1 - x| = 2021

Vậy GTNN của D là 2021

9 tháng 12 2023

Sửa đề: Tìm GTNN

D = |x - 2022| + |x - 1|

= |x - 2022| + |1 - x|

≥ |x - 2022 + 1 - x| = 2021

Vậy GTNN của D là 2021

13 tháng 6 2023

Tìm GTNN chứ nhỉ e

\(D=\left|2022-x\right|+\left|x-1\right|\ge\left|2022-x+x-1\right|=2021\)

Dấu "=" xảy ra \(\Leftrightarrow\left(2022-x\right)\left(x-1\right)\ge0\)

\(\Leftrightarrow1\le x\le2022\)

Vậy Min D=2021 \(\Leftrightarrow1\le x\le2022\)

1 tháng 8 2016

Hỏi đáp Toán

1 tháng 8 2016

\(A=\left(x-3,5\right)^2+1\)

Vì \(\left(x-3,5\right)^2\ge0\)

=> \(\left(x-3,5\right)^2+1\ge1\)

Vậy GTNN của A là 1 khi x=3,5

\(B=\left(2x-3\right)^4-2\)

Vì \(\left(2x-3\right)^4\ge0\)

=> \(\left(2x-3\right)^4-2\ge-2\)

Vậy GTNN của B là -2 khi x=\(\frac{3}{2}\)

\(C=2-x^2=-x^2+2\)

Vì \(x^2\ge0\)

=> \(-x^2\le0\)

=>\(-x^2+2\le2\)

Vậy GTLN của C là 2 khi x=0

\(D=-\left(x-3\right)^2+1\)

Vì \(\left(x-3\right)^2\ge0\)

=> \(-\left(x-3\right)^2\le0\)

=>\(-\left(x-3\right)+1\le1\)

Vậy GTLN của D là 1 khi x=3