K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5: \(\left(x+y\right)\left(x+2y\right)\left(x+3y\right)\left(x+4y\right)+y^4\)

\(=\left(x^2+5xy+4y^2\right)\left(x^2+5xy+6y^2\right)+y^4\)

\(=\left(x^2+5xy\right)^2+10y^2\left(x^2+5xy\right)+24y^4+y^4\)

\(=\left(x^2+5xy\right)^2+2\cdot\left(x^2+5xy\right)\cdot5y^2+\left(5y^2\right)^2\)

\(=\left(x^2+5xy+5y^2\right)^2\) là số chính phương

=>Mệnh đề này đúng

Mệnh đề phủ định là \(\overline{E}\) : \(\exists x,y\in R:\left(x+y\right)\left(x+2y\right)\left(x+3y\right)\left(x+4y\right)+y^4\) không là số chính phương

4: \(x\left(x+2\right)+y\left(y-4\right)+10\)

\(=x^2+2x+1+y^2-4y+4+5\)

\(=\left(x+1\right)^2+\left(y-2\right)^2+5\ge5>0\forall x,y\)

=>Mệnh đề này đúng

Mệnh đề phủ định là: \(\overline{D}:\) \(\exists x,y\in R:x\left(x+2\right)+y\left(y-4\right)+10\le0\)

3: \(2x^2+4xy+5y^2\)

\(=2x^2+4xy+2y^2+3y^2\)

\(=2\left(x+y\right)^2+3y^2\ge0\forall x,y\)

=>Mệnh đề này sai

Mệnh đề phủ định là: \(\overline{C}:\forall x,y\in R:2x^2+4xy+5y^2\ge0\)

1: TH1: n=3k

\(A=n^2+1=\left(3k\right)^2+1=9k^2+1\) không chia hết cho 3(1)

TH2: n=3k+1

\(A=n^2+1\)

\(=\left(3k+1\right)^2+1\)

\(=9k^2+6k+2=3\left(3k^2+2k\right)+2\) không chia hết cho 3(2)

TH3: n=3k+2

\(A=n^2+1\)

\(=\left(3k+2\right)^2+1\)

\(=9k^2+12k+4+1\)

\(=9k^2+12k+5=9k^2+12k+3+2=3\left(3k^2+4k+1\right)+2\) không chia hết cho 3(3)

Từ (1),(2),(3) suy ra A không chia hết cho 3

=>Mệnh đề này đúng

Mệnh đề phủ định là: \(\overline{A}:\exists n\in N:n^2+1\vdots3\)

11 tháng 9

còn B nữa ạ


có lời giải chi tiết với ạ


Câu 40: -6<2x<=8

=>-3<x<=4

=>A=(-3;4]

=>\(C_{R}A\) =R\A=(-∞;3]\(\cup\) (4;+∞)

|x+1|<=2

=>-2<=x+1<=2

=>-3<=x<=1

=>B=[-3;1]

=>\(C_{R}B\) =R\B=(-∞;-3)\(\cup\) (1;+∞)

\(\left(C_{R}A\right)\) \\(\left(C_{R}B\right)\) =[-3;1]

=>Không có câu nào đúng

Câu 39:

Để A giao B=rỗng thì -m+2>2m+1 hoặc -m+5<=2m-3

=>-3m>-1 hoặc -3m<=-8

=>m<1/3 hoặc m>=8/3

=>Chọn B

QT
Quoc Tran Anh Le
Giáo viên
28 tháng 8

NV
20 tháng 12 2022

5.

Tọa độ dỉnh của (P) là: \(I\left(-\dfrac{b}{2a};\dfrac{-\Delta}{4a}\right)\Rightarrow I\left(1;-4m-2\right)\)

Để I thuộc \(y=3x-1\)

\(\Rightarrow-4m-2=3.1-1\)

\(\Rightarrow m=-1\)

6.a.

Với \(a\ne0\)

 \(\left\{{}\begin{matrix}64a+8b+c=0\\-\dfrac{b}{2a}=5\\\dfrac{4ac-b^2}{4a}=12\end{matrix}\right.\)  \(\Leftrightarrow\left\{{}\begin{matrix}64a+8b+c=0\\b=-10a\\4ac-b^2=48a\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}c=-64a-8b=-64a-8\left(-10a\right)=16a\\b=-10a\\4ac-b^2=48a\end{matrix}\right.\)

\(\Rightarrow4a.16a-\left(-10a\right)^2=48a\)

\(\Rightarrow a=-\dfrac{4}{3}\Rightarrow b=\dfrac{40}{3}\Rightarrow c=-\dfrac{64}{3}\)

Hay pt (P): \(y=-\dfrac{4}{3}x^2+\dfrac{40}{3}x-\dfrac{64}{3}\)

NV
20 tháng 12 2022

b.

Thay tọa độ 3 điểm vào pt (P) ta được:

\(\left\{{}\begin{matrix}c=-1\\a+b+c=-1\\a-b+c=1\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a=1\\b=-1\\c=-1\end{matrix}\right.\)

Pt (P): \(y=x^2-x-1\)

c.

Do (P) đi qua 3 điểm có tọa độ (1;16); (-1;0); (5;0) nên ta có:

\(\left\{{}\begin{matrix}a+b+c=16\\a-b+c=0\\25a+5b+c=0\end{matrix}\right.\)  \(\Rightarrow\left\{{}\begin{matrix}a=-2\\b=8\\c=10\end{matrix}\right.\)

hay pt (P) có dạng: \(y=-2x^2+8x+10\)

10 tháng 2 2022

\(A=\left(m-2;6\right),B=\left(-2;2m+2\right).\)

Để \(A,B\ne\varnothing\)

\(\Rightarrow\orbr{\begin{cases}m-2\ge-2\\2m+2>6\end{cases}}\Rightarrow\orbr{\begin{cases}m\ge0\\m>2\end{cases}}\)

Kết hợp ĐK \(2< m< 8\)

\(\Rightarrow m\in\left(2;8\right)\)

10 tháng 2 2022
m€{2;8} nha HT @@@@@@@@@@
29 tháng 7 2022

a ) \mathbb{R} \backslash (-3; \, 1]R\(3;1]=(-∞;-3]∪(1;+∞)

b) (-\infty; \, 1) \backslash [-2; \, 0](;1)\[2;0]=(- (-\infty; \, 1) \backslash [-2; \, 0]∞;-2)(0;1)

8 tháng 7

a ) R\(−3;1]=(-∞;-3]∪(1;+∞)

b)  [-2; \, 0](−∞;1)\[−2;0]= [-2; \, 0]∞;-2)∪(0;1)