Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Câu 40: -6<2x<=8
=>-3<x<=4
=>A=(-3;4]
=>\(C_{R}A\) =R\A=(-∞;3]\(\cup\) (4;+∞)
|x+1|<=2
=>-2<=x+1<=2
=>-3<=x<=1
=>B=[-3;1]
=>\(C_{R}B\) =R\B=(-∞;-3)\(\cup\) (1;+∞)
\(\left(C_{R}A\right)\) \\(\left(C_{R}B\right)\) =[-3;1]
=>Không có câu nào đúng
Câu 39:
Để A giao B=rỗng thì -m+2>2m+1 hoặc -m+5<=2m-3
=>-3m>-1 hoặc -3m<=-8
=>m<1/3 hoặc m>=8/3
=>Chọn B

5.
Tọa độ dỉnh của (P) là: \(I\left(-\dfrac{b}{2a};\dfrac{-\Delta}{4a}\right)\Rightarrow I\left(1;-4m-2\right)\)
Để I thuộc \(y=3x-1\)
\(\Rightarrow-4m-2=3.1-1\)
\(\Rightarrow m=-1\)
6.a.
Với \(a\ne0\)
\(\left\{{}\begin{matrix}64a+8b+c=0\\-\dfrac{b}{2a}=5\\\dfrac{4ac-b^2}{4a}=12\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}64a+8b+c=0\\b=-10a\\4ac-b^2=48a\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}c=-64a-8b=-64a-8\left(-10a\right)=16a\\b=-10a\\4ac-b^2=48a\end{matrix}\right.\)
\(\Rightarrow4a.16a-\left(-10a\right)^2=48a\)
\(\Rightarrow a=-\dfrac{4}{3}\Rightarrow b=\dfrac{40}{3}\Rightarrow c=-\dfrac{64}{3}\)
Hay pt (P): \(y=-\dfrac{4}{3}x^2+\dfrac{40}{3}x-\dfrac{64}{3}\)
b.
Thay tọa độ 3 điểm vào pt (P) ta được:
\(\left\{{}\begin{matrix}c=-1\\a+b+c=-1\\a-b+c=1\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a=1\\b=-1\\c=-1\end{matrix}\right.\)
Pt (P): \(y=x^2-x-1\)
c.
Do (P) đi qua 3 điểm có tọa độ (1;16); (-1;0); (5;0) nên ta có:
\(\left\{{}\begin{matrix}a+b+c=16\\a-b+c=0\\25a+5b+c=0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a=-2\\b=8\\c=10\end{matrix}\right.\)
hay pt (P) có dạng: \(y=-2x^2+8x+10\)

\(A=\left(m-2;6\right),B=\left(-2;2m+2\right).\)
Để \(A,B\ne\varnothing\)
\(\Rightarrow\orbr{\begin{cases}m-2\ge-2\\2m+2>6\end{cases}}\Rightarrow\orbr{\begin{cases}m\ge0\\m>2\end{cases}}\)
Kết hợp ĐK \(2< m< 8\)
\(\Rightarrow m\in\left(2;8\right)\)

a ) \mathbb{R} \backslash (-3; \, 1]R\(−3;1]=(-∞;-3]∪(1;+∞)
b) (-\infty; \, 1) \backslash [-2; \, 0](−∞;1)\[−2;0]=(- (-\infty; \, 1) \backslash [-2; \, 0]∞;-2)∪(0;1)
a ) R\(−3;1]=(-∞;-3]∪(1;+∞)
b) [-2; \, 0](−∞;1)\[−2;0]= [-2; \, 0]∞;-2)∪(0;1)
5: \(\left(x+y\right)\left(x+2y\right)\left(x+3y\right)\left(x+4y\right)+y^4\)
\(=\left(x^2+5xy+4y^2\right)\left(x^2+5xy+6y^2\right)+y^4\)
\(=\left(x^2+5xy\right)^2+10y^2\left(x^2+5xy\right)+24y^4+y^4\)
\(=\left(x^2+5xy\right)^2+2\cdot\left(x^2+5xy\right)\cdot5y^2+\left(5y^2\right)^2\)
\(=\left(x^2+5xy+5y^2\right)^2\) là số chính phương
=>Mệnh đề này đúng
Mệnh đề phủ định là \(\overline{E}\) : \(\exists x,y\in R:\left(x+y\right)\left(x+2y\right)\left(x+3y\right)\left(x+4y\right)+y^4\) không là số chính phương
4: \(x\left(x+2\right)+y\left(y-4\right)+10\)
\(=x^2+2x+1+y^2-4y+4+5\)
\(=\left(x+1\right)^2+\left(y-2\right)^2+5\ge5>0\forall x,y\)
=>Mệnh đề này đúng
Mệnh đề phủ định là: \(\overline{D}:\) \(\exists x,y\in R:x\left(x+2\right)+y\left(y-4\right)+10\le0\)
3: \(2x^2+4xy+5y^2\)
\(=2x^2+4xy+2y^2+3y^2\)
\(=2\left(x+y\right)^2+3y^2\ge0\forall x,y\)
=>Mệnh đề này sai
Mệnh đề phủ định là: \(\overline{C}:\forall x,y\in R:2x^2+4xy+5y^2\ge0\)
1: TH1: n=3k
\(A=n^2+1=\left(3k\right)^2+1=9k^2+1\) không chia hết cho 3(1)
TH2: n=3k+1
\(A=n^2+1\)
\(=\left(3k+1\right)^2+1\)
\(=9k^2+6k+2=3\left(3k^2+2k\right)+2\) không chia hết cho 3(2)
TH3: n=3k+2
\(A=n^2+1\)
\(=\left(3k+2\right)^2+1\)
\(=9k^2+12k+4+1\)
\(=9k^2+12k+5=9k^2+12k+3+2=3\left(3k^2+4k+1\right)+2\) không chia hết cho 3(3)
Từ (1),(2),(3) suy ra A không chia hết cho 3
=>Mệnh đề này đúng
Mệnh đề phủ định là: \(\overline{A}:\exists n\in N:n^2+1\vdots3\)
còn B nữa ạ