Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a) Xét ∆ADC có :
CH là trung tuyến AD ( AH = HD )
CH là đường cao
=> ∆ADC cân tại C
=> CH là phân giác DCA
Hay CB là phân giác DCA
b) Xét ∆ vuông BHA và ∆ vuông DHE ta có :
BHA = DHE
HA = HD
=> ∆BHA = ∆DHE (cgv-gn)
=> BAH = HDE
Mà 2 góc này ở vị trí so le trong
=> BA//DE
c) Chứng minh DKA = 90°
=> HK = HD = HA ( tính chất )
=> HK = \(\frac{1}{2}\:AD\)

Gọi G là giao điểm của BE và AC (*)
Ta có: tam giác ABC vuông tại A (gt) =>AC vuông góc với AB tại A
=> GC vuông góc với AB tại A
=> GC là đường cao thứ nhất của tam giác GBC (1)
Ta có: BE vuông góc với CD tại E => BE vuông góc EC tại E
=> CE là đường cao thứ 2 của tam giác GBC (2)
Ta có BA cắt CE tại D (3)
Từ (1), (2), (3) ta suy ra D là trực tâm của tam giác GBC
=> GD thuộc đường cao thứ 3 của tam giác GBC.
=> GD vuông góc với BC
Ta có AH vuông góc với BC tại H (vì AH là đường cao của tam giác ABC) ; DF song song với AH.
=> DF vuông góc với BC tại F
=> G,D,F thẳng hàng
=> DF đi qua G (**)
Từ (*), (**) ta suy ra: CA, BE, DF đồng quy tại G (đpcm)
Ta có: DE//BC
=>\(\hat{ADE}=\hat{ABC};\hat{AED}=\hat{ACB}\) (các cặp góc đồng vị)
mà \(\hat{ABC}=\hat{ACB}\) (ΔABC cân tại A)
nên \(\hat{ADE}=\hat{AED}\)
=>AD=AE
Ta có: AD+DB=AB
AE+EC=AC
mà AD=AE và AB=AC
nên DB=EC
Xét ΔDBC và ΔECB có
DB=EC
\(\hat{DBC}=\hat{ECB}\) (ΔABC cân tại A)
BC chung
Do đó: ΔDBC=ΔECB
=>\(\hat{DCB}=\hat{EBC}\)
=>\(\hat{OBC}=\hat{OCB}\)
=>ΔOBC cân tại O
=>OB=OC
=>O nằm trên đường trung trực của BC(1)
Ta có:AB=AC
=>A nằm trên đường trung trực của BC(2)
Ta có;ΔABC cân tại A
mà AH là đường cao
nên H là trung điểm của BC
=>H nằm trên đường trung trực của BC(3)
Từ (1),(2),(3) suy ra A,O,H thẳng hàng
=>AH đi qua O