K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Ta có: DE//BC

=>\(\hat{ADE}=\hat{ABC};\hat{AED}=\hat{ACB}\) (các cặp góc đồng vị)

\(\hat{ABC}=\hat{ACB}\) (ΔABC cân tại A)

nên \(\hat{ADE}=\hat{AED}\)

=>AD=AE
Ta có: AD+DB=AB

AE+EC=AC

mà AD=AE và AB=AC

nên DB=EC

Xét ΔDBC và ΔECB có

DB=EC

\(\hat{DBC}=\hat{ECB}\) (ΔABC cân tại A)

BC chung

Do đó: ΔDBC=ΔECB

=>\(\hat{DCB}=\hat{EBC}\)

=>\(\hat{OBC}=\hat{OCB}\)

=>ΔOBC cân tại O

=>OB=OC

=>O nằm trên đường trung trực của BC(1)

Ta có:AB=AC

=>A nằm trên đường trung trực của BC(2)

Ta có;ΔABC cân tại A

mà AH là đường cao

nên H là trung điểm của BC

=>H nằm trên đường trung trực của BC(3)

Từ (1),(2),(3) suy ra A,O,H thẳng hàng

=>AH đi qua O

a) Xét ∆ADC có : 

CH là trung tuyến AD ( AH = HD )

CH là đường cao 

=> ∆ADC cân tại C 

=> CH là phân giác DCA 

Hay CB là phân giác DCA

b) Xét ∆ vuông BHA và ∆ vuông DHE ta có : 

BHA = DHE 

HA = HD 

=> ∆BHA = ∆DHE (cgv-gn)

=> BAH = HDE 

Mà 2 góc này ở vị trí so le trong

=> BA//DE

c) Chứng minh DKA = 90° 

=> HK = HD = HA ( tính chất )

=> HK = \(\frac{1}{2}\:AD\)

29 tháng 3 2018

Gọi G là giao điểm của BE và AC (*)

Ta có: tam giác ABC vuông tại A (gt) =>AC vuông góc với AB tại A 

       => GC vuông góc với AB tại A 

       => GC là đường cao thứ nhất của tam giác GBC  (1)

Ta có: BE vuông góc với CD tại E => BE vuông góc EC tại E

=> CE là đường cao thứ 2 của tam giác GBC  (2)

Ta có BA cắt CE tại D  (3)

Từ (1), (2), (3) ta suy ra D là trực tâm của tam giác GBC

=> GD thuộc đường cao thứ 3 của tam giác GBC.

=> GD vuông góc với BC 

Ta có AH vuông góc với BC tại H (vì AH là đường cao của tam giác ABC) ; DF song song với AH.

=> DF vuông góc với BC tại F 

=> G,D,F thẳng hàng

=> DF đi qua G (**)

Từ (*), (**) ta suy ra: CA, BE, DF đồng quy tại G (đpcm)